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This paper explores how labor market conditions drive gender differences in

the human capital decisions of men and women. Specifically, I investigate how

male and female schooling decisions respond to an exogenous change in cognitive
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thermal inversions, which exacerbate air pollution, leads to lower cognitive ability in

adulthood for both men and women. I then explore how male and female schooling

decisions respond differentially to this cognitive shock: for women only, pollution

exposure leads to reduced educational attainment and income. I show that this

gender difference is explained by the fact that women disproportionately sort into

white-collar jobs, where schooling and ability are more complementary than they

are in blue-collar jobs.

Keywords: gender, occupational choice, early life, pollution, education, Mexico

JEL Codes: I26, Q53, J24
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1. Introduction

In both developed and developing countries, there are systematic differences in

the human capital decisions made by men and women. For schooling decisions,

specifically, there are well-documented gender differences in schooling levels,

schooling returns, and the trends in both of these over time (Psacharopoulos and

Patrinos, 2004; Grant and Behrman, 2010; Pitt et al., 2012; Rosenzweig and Zhang,

2013). Importantly, it is also clear that men and women differ in their schooling

responses to various shocks, including individual early-life health shocks (Bobonis

et al., 2006; Maluccio et al., 2009; Field et al., 2009; Maccini and Yang, 2009) and

country-wide technological change (Rendall, 2017).

In this paper, I explore how the labor market can drive gender differences

in the schooling response to an early-life health shock. After documenting that a

negative shock to cognitive ability translates into different schooling responses for

men and women, I investigate whether gender-specific labor market opportunities

are responsible for these differences.

Using the Mexican Family Life Survey, I first show that in utero exposure to

poor air quality reduces adult cognitive ability for both men and women. To do this,

I use thermal inversions, a meteorological phenomenon that negatively impacts

air quality, as an exogenous source of variation in pollution levels. Exploiting

within-municipality variation in thermal inversion exposure across birth cohorts,

I find that men and women exposed to more thermal inversions (and thus worse

pollution) during their second trimester in utero score significantly lower on Raven’s

tests of fluid intelligence as young adults. Many studies have shown that in utero

exposure to air pollution can negatively affect birth outcomes (like birth weight
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or infant mortality),1 but this paper contributes to a smaller body of research

that looks at the longer-term impact of such exposure (Sanders, 2012; Isen et al.,

2017; Bharadwaj et al., 2017; Peet, 2016; Rosales-Rueda and Triyana, 2018).2 The

importance of this line of research is growing rapidly: recent studies have revealed

pollution as one of the main causes of disease and premature death worldwide

(Landrigan et al., 2018),3 but we have much to learn about the long-run effects of

early-life exposure, especially in developing countries.

Having established that in utero exposure to pollution drives exogenous changes

in cognitive ability, I then ask how male and female schooling decisions respond to

this cognitive shock. For women, pollution exposure in the second trimester leads

to significantly lower high school completion and income. Men, on the other hand,

do not adjust their schooling decisions at all. Male income effects are negative, but

not significantly different from zero.

I outline a simple model that highlights three potential labor market features

that might explain the gender difference in the high school completion response.

Men and women differ in their tendency to take up a white-collar job, their labor

force participation, and their opportunity costs of schooling, all of which could be

1. See Chay and Greenstone (2003), Currie and Neidell (2005), Jayachandran (2009), and

others summarized in Currie et al. (2014).

2. Another strand of research on long-term effects of pollution has focused on exposure to

radiation from nuclear accidents (Almond et al., 2009; Black et al., 2014), a very different and

more extreme case of air pollution than what is studied here.

3. In 2015, for example, pollution-related diseases were found to be responsible for 16% of

deaths globally (Landrigan et al., 2018). This was three times more than the combination of

deaths from AIDS, malaria, and tuberculosis.
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responsible for the gender difference that I find. Empirically, however, white-collar

sorting tendencies are the only labor market feature that are able to explain this

gender difference.

Specifically, when I allow for the effect of pollution to vary across individuals

facing different gender-specific white-collar opportunities, the gender difference

in the high school completion response completely disappears. In addition, I

find that the negative effect of inversions on high school completion is driven

by those with more white-collar opportunities. These findings can be explained

the fact that schooling and cognitive ability are more complementary in white-

collar jobs (favored by women) than blue-collar jobs (favored by men), as these

complementarities are what determine how an individual’s schooling decision will

respond to a cognitive shock. In short, these results provide empirical support for

a commonly proposed but rarely tested hypothesis:4 that gender differentials in

the effects of early life shocks can be explained by gender-specific labor market

conditions. I am able to rule out other explanations for my results, including son

preference and gender differences in other characteristics (labor force participation,

youth employment opportunities, marriage, income, and industry choices).

This paper extends the work of two important studies (Pitt et al., 2012;

Rosenzweig and Zhang, 2013), which find evidence of gender-specific schooling

responses to a physical health shock, similar to what I find in the context of a

cognitive ability shock. In these studies, the authors formally model the idea that

4. Several studies have hypothesized that gender differences can stem from the different labor

market conditions that men and women face (Bhalotra and Venkataramani, 2013; Cutler et al.,

2010; Hoddinott et al., 2008; Bhalotra et al., 2016), but very little evidence for this hypothesis

currently exists.
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gender-specific occupational sorting might drive differential schooling responses

across genders. My work expands on this knowledge by providing an empirical link

between schooling responses and job opportunities, which allows me to quantify

how much of the gender difference can be explained by this mechanism. In this

context, I find that the gender difference is fully explained by these labor market

conditions.

By emphasizing the interaction between early-life shocks and labor market

opportunities, this paper speaks to two important questions in the literature. First,

it sheds light on the substantial heterogeneity – both across and within studies –

in the estimated schooling responses reported in the existing literature.5 Given

that labor market conditions vary over time, across space, and across groups, this

heterogeneity can be explained by the main result of this paper: individuals facing

different labor market opportunities respond differently to early-life shocks.

This paper also addresses the important question of how early-life shocks

interact with policy interventions or economic conditions later in life. Whether

these events are health or education interventions (Adhvaryu et al., 2018; Rossin-

Slater and Wüst, 2019; Gunnsteinsson et al., 2014), economic shocks (Bharadwaj

et al., 2019), or the labor market conditions studied in this paper, the fact that

they interact with early-life conditions in ways we may not yet fully understand

has implications for future policy and the interpretation of existing results.

5. For example, many studies find that health conditions early in life have a substantial

impact on educational attainment (Almond, 2006; Bleakley, 2007), while others find no effect

(Venkataramani, 2012; Cutler et al., 2010), or much smaller effects for certain groups (Maluccio

et al., 2009; Maccini and Yang, 2009; Field et al., 2009; Bleakley, 2010).
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2. Background

In this section, I provide a brief background on the education system and

occupations in Mexico, the biological effects of pollution, and the meteorological

events known as thermal inversions that will provide the identifying variation for

this study.

2.1. Education and Occupations in Mexico

This paper investigates the education decisions of men and women in Mexico.

As in most countries, detailed information on exactly how individuals make their

schooling decisions is limited,6 but certain features of the school system and

eventual occupation distributions are likely to be relevant to the schooling decision

process. The school system in Mexico consists of six years of primary school, three

years of junior high school (lower secondary), and four years of high school (upper

secondary). Until 1992, compulsory schooling laws required six years of school.

This requirement was increased to nine years in 1992, and then to eleven years in

2001. Of the cohorts that make up this study’s sample, the majority were attending

school during a period when either nine or eleven years were compulsory.

As illustrated in Appendix Figure A1, there is substantial variation in the

educational attainment of Mexican adults in the 2000 and 2010 censuses. In the

overall population, approximately 20-30% fall into each of the following education

categories: no primary, only primary completed, only junior high completed,

6. Attanasio and Kaufmann (2014) use unique survey data from poor Mexican youths to

document that schooling decisions depend on the expected returns to schooling and perceived

unemployment and earnings risk. The perceptions of parents and children both seem to matter.
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and high school completed. These education decisions seem to have important

implications for the job an individual eventually obtains. Figure A1 also illustrates

the vastly different education distributions for white-collar and blue-collar workers,

classified using ISCO codes according to the brains-brawn categorization in Vogl

(2014), summarized in Table 1. The vast majority of white-collar workers are high

school graduates. 80% of white-collar workers have a high school degree, while

only 14% report junior high as their highest level of education, suggesting that a

white-collar job is difficult to obtain for those who have not completed high school.

Especially important to this paper are the differences in occupation

distributions across gender, reported in Table 1. Here, I report the distribution

across ISCO occupation codes for each gender. Female white-collar shares (35%)

are much higher than male white-collar shares (20%). As shown in Appendix Figure

A2, this is not unique to Mexico: similar patterns hold across several countries.

Table 1. Occupation Distributions by Gender

ISCO Occupation Code & Description Male Female
White-Collar ("Brains") 19.85 35.34

1 Legislators, senior officials and managers 3.89 3.49
2 Professionals 7.86 10.86
3 Technicians and associate professionals 3.46 8.74
4 Clerks 4.64 12.25

Blue-Collar ("Brawn") 80.15 64.66
5 Service workers and shop and market sales 16.41 27.93
6 Skilled agricultural and fishery workers 16.32 2.85
7 Crafts and related trades workers 23.36 8.99
8 Plant and machine operators and assemblers 13.02 4.99
9 Elementary occupations (domestic workers, 

laborers, etc)
11.04 19.9

Notes: Brain and brawn categorizations from Vogl (2014). Weighted percentages calculated from
working adults aged 25 to 65 in the 2000 and 2010 Mexican census.
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In Mexico, another important way in which men and women differ is in

their labor force participation. In the 2000 and 2010 censuses, male labor force

participation was around double the female labor force participation rate. These

gender differences are also present for school-aged children. Boys under the age

of 18 are also twice as likely to be working compared to girls of the same age,

suggesting that the opportunity cost of schooling differs across genders.

2.2. Pollution

Substantial medical and epidemiological evidence demonstrates that in utero

exposure to pollution can be harmful to the fetus (Lacasaña et al., 2005; Peterson

et al., 2015; Le et al., 2012; Saenen et al., 2015; Backes et al., 2013). Concrete

evidence that pins down the biological mechanisms is more limited, but there are

a few commonly cited suspected pathways that primarily relate to two types of

pollutants: carbon monoxide (CO) and particulate matter (PM-10 or PM-2.5).

As described in detail in Appendix Section B.1, both of these pollutants

can disrupt the transport of blood, glucose, or oxygen to the fetus, which could

in theory have negative impacts on both the physical and cognitive aspects of

fetal development. Whether pollution exposure results in primarily physical or

cognitive damage likely depends on the timing of exposure (Dobbing and Sands,

1973). For instance, because most neurogenesis takes place in the second trimester

of pregnancy, this trimester is seen as a “critical period for the formation of

cortical neurons” (Morgan and Gibson, 1991, p.10). In line with this, medical

and economic studies on exposure to radiation flag the second trimester as the

most sensitive period for brain development (Otake, 1998; Almond et al., 2009;
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Black et al., 2014).7 Although day-to-day air pollution and radiation are very

different types of pollution, these radiation studies offer some generalizable lessons

about the critical periods in brain development: second trimester exposure is also

particularly detrimental for other external stressors, like influenza (Schwandt, 2018)

and nutritional deficiencies (Morgan and Gibson, 1991).8

Individuals make different schooling decisions and earn different wages partially

because of heterogeneous levels of ability. Any effect that in utero exposure to

pollution has on schooling and labor market outcomes is likely working through its

biological effect on this unobserved endowment, of which cognitive functioning is

an important component.

The ideal data set for an analysis of the long-run effects of in utero exposure

would consist of pollution data going back to the in utero months of my sample

individuals, who are adults in the 2002 through 2009 waves of the MxFLS.

Pollution measurements for CO, O3, SO2, NO2, PM10, and most recently, PM2.5

are available for a total of 16 cities from Mexico’s National Institute of Ecology

(INECC). However, the majority of this spatially limited data does not go back far

7. Otake (1998) document that weeks 8 to 25 (late first and almost entire second trimester)

are particularly crucial for brain development. Black et al. (2014) also find that the 3rd, 4th,

and 5th months of pregnancy were the critical periods during which exposure to nuclear fallout

resulted in lower IQ as adults.

8. The critical period highlighted by these studies coincides with crucial processes in the

development of the fetal brain. The migration of neurons, from their place of origin to their final

location in the brain, peaks in the second trimester and is largely complete by the beginning of

the third trimester. Similarly, synaptic connections in the cortex are refined and become more

permanent starting in the second trimester; this process peaks by the beginning of the third

trimester (Tau and Peterson, 2010).
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enough to study at-birth exposure of adults in the MxFLS. The earliest pollution

measurements date back to 1986, but for only CO in Mexico City, for which there

are large sections of missing data until about 1993.

The lack of high quality historical data going back far enough to link adults

with their in utero exposure is a major obstacle to identifying the effects of pollution

exposure at birth on later life outcomes, in this context as well as more generally.

In order to circumvent this issue, I rely on thermal inversions, a meteorological

phenomenon known to worsen air quality, as an exogenous source of variation in

pollution levels for which there is data for all of Mexico dating back to 1979.

2.3. Thermal Inversions

Air temperature typically falls with altitude, but when a thermal inversion occurs,

this relationship reverses, which results in a warm layer of air sitting above cooler

air, trapping pollutants released near the surface. That thermal inversions can

negatively impact air quality is well-documented, both in the atmospheric sciences

literature (Jacobson, 2002) as well as more recently in the economics literature

(Jans et al., 2018; Arceo et al., 2016).9

In general, inversions are the result of the combination of various atmospheric

forces and geographic conditions. I argue that after controlling for all of the relevant

main effects (fixed geographic characteristics, time of year, temperature, humidity,

cloud coverage, etc.), the occurrence of a thermal inversion is exogenous: essentially

the random interaction of all of the necessary conditions. Like Jans et al. (2018) and

Arceo et al. (2016), I assume that thermal inversions can only affect my outcomes

9. See Appendix Section B.2 and Jacobson (2002) for a more detailed discussion of the

different types and causes of inversions.
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of interest through their effect on pollution levels, once I have controlled for all

of the weather controls, geographic fixed effects, and non-linear time trends that I

include in my regressions.

I identify thermal inversions in Mexico using the North American Regional

Reanalysis (NARR) data, which provides air temperatures just above the surface

and at various pressure levels above sea-level on a 0.3 x 0.3 degree grid (roughly

30km by 30 km) across the North American continent.10 Using atmospheric

modeling techniques, the NARR combines temperature, wind, moisture, and

precipitation data from a number of different sources, including weather balloons,

commercial aircraft recordings, ground-based rainfall measurements, and satellite

data.11 The resulting data set records, every three hours for each grid point, a wide

array of meteorological variables at the surface, a few meters above the surface,

and at 29 pressure levels (extending vertically into the atmosphere), from 1000 hPa

(roughly equivalent to sea level) to 100 hPa (about 16,000 meters above sea-level).

To identify thermal inversions, I take the air temperature 2 meters above the

surface12 and subtract this from the air temperature recorded at the pressure level

25 hPa lower (roughly 300 meters higher) than the surface pressure at a given

10. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado,

USA, from their Web site at http://www.esrl.noaa.gov/psd/.

11. See Mesinger et al. (2006) for more detail about the various data sources and model. See

Appendix Section B.2 for a discussion of validation checks.

12. 2-meter temperature is what is reported by meteorologists in weather reports and is

distinct from “skin” surface temperature, which the NARR also records.
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location.13 I identify an inversion episode as any time this difference is greater

than zero, consistent with the American Meteorological Society’s definition of an

inversion (Glickman and Zenk, 2000) and how existing literature identifies them

(Beard et al., 2012; Devasthale et al., 2010). I use the 25 hPa increment because

this is the smallest increment between pressure levels available in the NARR data.

Looking further above the surface (50 hPa or 75 hPa, for example) does not detect

many additional inversions and therefore, unsurprisingly, leaves my results virtually

unchanged. In general, I am most interested in the inversions close to the surface

as they are likely to have the largest effects on air quality.

Like Jans et al. (2018), I focus on nighttime inversions. There is greater

variation in the occurrence of nighttime (compared to daytime) inversions over

time and across space, which makes nighttime inversions much stronger predictors

of pollution in my first-stage checks. Moreover, nighttime inversions are much less

visible than daytime inversions and are therefore less likely to generate behavioral

responses.14

In addition to using the NARR to identify thermal inversions, I also utilize

this data set’s relative humidity, wind speed, and total cloud coverage variables

as important controls in all specifications. Although precipitation is also available

in the NARR data set, I use ground measurements recorded by Mexico’s National

13. Because of varying surface altitude across Mexico, I do not take temperature from the same

pressure level for all points. For example, for a municipality at sea level, I use the temperature

at 975 hPa, whereas for a higher-altitude location in Mexico City, I use the 700 pressure level

because the surface pressure is 725.

14. Daytime inversions are not always visible but are more likely to be seen in warm and

humid climates like Mexico’s.
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Meteorological Service (CONAGUA) to control for rainfall because these should

be measured with less error.

As mentioned above, Mexican pollution measures do not date back far enough

to enable me to use thermal inversions as an instrument for in utero exposure to

pollution, as Arceo et al. (2016) do in their study of the contemporaneous effects

of pollution. However, using the pollution measures that do exist, I check whether

thermal inversions drive pollution levels in the years and cities for which I have

pollution data. To establish a link between thermal inversions (Ijym) and pollution

levels (Pjym) in a given municipality j, during the three-month period starting from

month m in year y, I run the following regression:

Pjym = α1Ijym + α′
2Wjym + µj + δy + αm + vjym. (1)

Pjym represents a pollution measure averaged over the three month period

starting in month m of year y. I aggregate to the three-month level because my

main analysis studies the effects of pollution by trimester. I look at CO (8-hour

daily maximum), PM-10 (mean), SO2 (mean), NO2 (mean), and O3 (8-hour daily

maximum). Ijym represents the average number of days per month with a nighttime

inversion in that same three-month period. I include municipality (µj), year (δy),

and month (αm) fixed effects. Wjym is a vector of flexible weather controls (also

averaged across the three month period): linear, quadratic, and cubic terms of

minimum, maximum, and mean 2-meter temperature, rainfall, relative humidity,

wind speed, and total cloud coverage. In this regression, these weather controls

are important because they influence the likelihood of a thermal inversion but also

have the potential to directly affect pollution levels. In the later analysis, their
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inclusion is crucial to ensure that thermal inversions are affecting my outcomes of

interest only via the pollution channel, and not through these weather variables.

Table 2 reports the results of this regression, using data from 1994, when more

complete data was being recorded, to 2009, the last year of available pollution data.

Even after controlling for a complete set of fixed effects and weather controls,

inversions are positively and significantly related to both CO and PM-10 levels.

The F-statistics in this “quasi-first-stage” exceed conventional thresholds for strong

instruments. There are no significant effects of thermal inversions on SO2, NO2, or

O3, consistent with the findings of Arceo et al. (2016). When I later estimate the

reduced form effect of thermal inversions on various outcomes of interest, all of the

effects should be interpreted as operating through the effect of thermal inversions

on CO and PM-10 (and not the other pollutants).

Table 2. Relationship between Thermal Inversions and Pollution

(1) (2) (3) (4) (5)

CO PM-10 SO2 NO2 O3

Average Monthly Inversions During 3-
Month Period 0.0140*** 0.474*** -0.000523 -0.00481 -0.0000252

(0.00254) (0.0828) (0.000406) (0.00292) (0.0000457)

N 23821 21292 25083 21939 24294
Mean of DV 2.306 55.17 0.0225 0.0806 0.0544
Fstat 30.449 32.835 1.662 2.717 .304

Notes: * p< 0.1 ** p< 0.05 *** p< 0.01. Standard errors (clustered at municipality level) in
parentheses. The dependent variables are three-month averages of CO (8-hour daily maximum,
in ppm), PM-10 (mean in µg/m3), SO2 (mean in ppm), NO2 (mean in ppm), and O3 (8-hour
daily maximum, in ppm). All regressions control for month, year, and municipality fixed effects,
cubic functions of average monthly mean, minimum, and maximum 2m temperatures, average
monthly relative humidity, average monthly precipitation, and average monthly cloud coverage
during each relevant 3-month period.
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3. Data

This section outlines the outcome data used to document the effects of thermal

inversions on later-life outcomes and pin down the role played by the local labor

market. More details are provided in Appendix Section B.3.

3.1. Mexican Family Life Survey

All outcome variables come from the Mexican Family Life Survey (MxFLS),

a nationally representative longitudinal household survey that began in 2002

and conducted follow-ups in 2005 and 2009. In addition to collecting standard

demographic, schooling, and employment information, this survey also measured

several physical biomarkers (like height) and administered Raven’s tests of fluid

intelligence.

I use scores from the “adult” version of the Raven’s test, which was

administered in the MxFLS to all individuals aged 13 and older. This test consisted

of 12 multiple choice questions taken from the Standard Progressive Matrices.15

Each question presents a three-by-three matrix of symbols, with one symbol

missing, and subjects are asked to pick the correct symbol to fill in the blank.

In the MxFLS, respondents took the test on paper, in a quiet location of the house

(if possible), and were given 30 minutes to complete the test (though the majority

finished in 15 minutes or less).

15. The Standard Progressive Matrices are the original Raven’s tests. The easier Colored

Progressive Matrices, developed later, were used for children in the MxFLS. The more

complicated Advanced Progressive Matrices were not used.
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Raven’s tests capture what is known as fluid intelligence or analytic intelligence

– “the ability to reason and solve problems involving new information, without

relying extensively on an explicit base of declarative knowledge derived from either

schooling or previous experience” (Carpenter et al., 1990, p.1). These test scores

are highly correlated with performance in other complex cognitive tests (Vernon

and Parry, 1949; Carpenter et al., 1990).

I use these Raven’s test scores, height, educational attainment, and earned

annual income as my main outcomes of interest. I include individuals found in

any wave of the survey in order to obtain as large of a sample as possible. For all

outcomes except for Raven’s scores, I take the outcome from the most recent wave

in which the individual was interviewed. For Raven’s tests, I use each individual’s

first test score in order to minimize the effect that test-taking experience (either

from the survey or elsewhere) may have on their scores.16

Another key variable obtained from the MxFLS is municipality of birth, a

restricted-use variable that enables me to link adults and adolescents (including

those who have migrated) with thermal inversion exposure specific to their

birthplace at their time of birth. More details about the construction of individual-

level variables are provided in Appendix Section B.3.

Table 3 reports summary statistics, by gender, for the outcomes and main

regressors for all individuals with non-missing thermal inversion data (implying a

non-missing birth month, birth municipality, and birth year after 1978) and who

were at least 15 years of age in the last MxFLS wave in which they appeared. These

are the individuals old enough to have been included in the migration module of

16. It should be noted that the same set of 12 questions were used for the Raven’s test in all

three survey waves.
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Table 3. Summary Statistics

Variable Name Mean S.D. N Mean S.D. N

Outcome Variables
0.55 0.229 5455 0.56 0.226 4865

155.20 7.722 5506 166.06 10.27 4892
9.52 3.075 5634 9.20 3.074 5081

Raven's test score (proportion correct) 
Height (cm)
Years of schooling 
Annual income 24555.65 22352.4 954 31405.04 74474.1 2043

Control Variables
Mother's Education 6.00 3.853 5204 6.36 3.804 4566
Father's Education 6.34 4.279 4832 6.69 4.226 4258
Age for Raven's Test variable 17.24 3.319 5455 17.12 3.398 4865
Age for height variable 20.38 4.491 5506 19.86 4.507 4892
Age for schooling variables 20.45 4.424 5634 19.94 4.463 5081
Age for income variable 22.56 3.627 954 22.36 3.693 2043

Inversion Variables Mean SD 10th pctile Median 90th pctile N
Average monthly inversions during trimester 1 18.09 8.206 5.93 19.23 28 10848
Average monthly inversions during trimester 2 17.93 8.235 5.69 18.94 28 10848
Average monthly inversions during trimester 3 17.80 8.288 5.54 18.94 28 10848

Female Male

Full Sample

Notes: Sample includes individuals with non-missing thermal inversion data who were at least 15
years of age in the last MxFLS wave in which they appeared.

the survey, which obtains information about place of birth. I report raw means

for Raven’s test scores and height in this table but use standardized variables in

the regressions.17 The sample size for annual income is much smaller compared

to the other variables, primarily because I restrict to those who report work as

their primary activity in the week prior to the survey.18 I do this in order to

exclude those still in school but working part-time, whose income is likely a poor

representation of their labor market productivity or lifetime earning potential.

17. I standardize test scores using the full sample mean and standard deviation. For height,

I use WHO standards for everyone under 20 and for the remainder of the sample simply

standardize using the gender-specific mean and standard deviation of the sample population

20 and older. I identify and drop gross outliers.

18. They make up about 40% of this relatively young sample. About 1,000 more are dropped

due to missing income data.
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Note that this restriction does not apply to the rest of the outcome variables.

On average, individuals in this sample are exposed to approximately 18 inversion

nights per month during any given trimester.

3.2. Census Data

In order to investigate the interaction between labor market conditions and

pollution exposure, I use various labor market variables from the 1990, 2000, and

2010 Mexican censuses (Minnesota Population Center, 2015). I collapse to the

commuting zone level and link this labor market information to individuals using

their commuting zone of residence during their school-aged years. Following Atkin

(2016), I use commuting zones instead of individual municipalities because these

better represent local labor markets. For instance, large metropolitan areas are

often composed of many municipalities, with individuals often working and residing

in different ones. I combine all municipalities in the same Zona Metropolitan

(according to the 2000 INEGI classification) into a single commuting zone and also

combine municipalities where over 10% of the working population in one reports

commuting to another for work (according to the more detailed version of the 2000

census, obtained from INEGI).

I calculate zone-specific, gender-specific labor force participation, white-collar

shares, youth employment rates (among individuals aged 12-16), and average

youth income (among individuals aged 12-16). In my main specifications, I linearly

interpolate between census years in order to assign individuals a value from the

year in which they turned 12, in their commuting zone of residence at age 12. In

robustness checks, I assign values to individuals based on the census conducted

closest to the year in which they turned 12. For white-collar shares, I also use a
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shift-share strategy for predicting values for years in between censuses, which I

describe in Appendix Section B.4.

In order to investigate the potential role of son preference, I also use the 1970

census and calculate male-to-female sex ratios among children (under 5 and under

3 years old) for each state.

4. Empirical Strategy

To estimate the effects of pollution, I regress my outcomes of interest on thermal

inversion counts over several three month periods prior to and after a child’s birth.

In addition to helping to overcome the pollution data limitations described above,

using thermal inversions also addresses the endogeneity of pollution. Pollution is

not randomly assigned: individuals born in highly polluted areas are different from

those born in less polluted areas. While location fixed effects can be used to alleviate

these residential sorting concerns, they do not control for location-specific trends

in pollution that may coincide with trends in the outcomes of interest.

In this framework, thermal inversions can be thought of as an “instrument” that

generates exogenous variation in an endogenous variable that I do not observe. This

endogenous variable is not a particular pollutant but rather, air quality in general.

The approach of this paper is not designed to estimate the dose-response function

of specific pollutants: rather, it offers a well-identified way to learn whether being

exposed to higher pollution while in utero has discernible effects in the long term.

For individual i, born in municipality j, in year y and month m, whose outcome

Yijymw comes from survey wave w, I estimate the following specification:
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Yijymw =
3∑

k=−7

βkI
3k
jym +

3∑
k=−7

α′
kW

3k
jym + γ′Xi+

µj + (δy x νw) + ηm + εijymw. (2)

Iajym represents the average number of monthly thermal inversions that took

place in individual i’s municipality of birth during the three month period starting

a months after the individual’s birth month (where negative values indicate months

before birth). I include all three month periods starting a year before conception

(21 months before birth) until a year after birth in order to identify critical periods

and ensure that any effects I find in the in utero period are not being driven

by serial correlation in the thermal inversion variable year to year. Omitting the

thermal inversion variables from before and after pregnancy could result in their

effects loading onto the trimester coefficients. The coefficients on inversions prior

to conception also serve as a falsification check, as pollution exposure before a child

is conceived should not have direct effects on that child’s outcomes.

Wa
jym is a vector of weather controls (minimum, maximum, and mean

temperatures, rain, total cloud coverage, relative humidity, and wind speed),

averaged over each three-month period, along with their squares and cubes. In

this specification, municipality fixed effects (µj) address cross-sectional pollution

endogeneity concerns, including residential sorting issues, by ensuring that

identification comes from within-municipality variation over time. Year (δy) and

month fixed effects (ηm) control flexibly for long-term and seasonal time trends.

The interaction of year and wave dummies (δy x νw) capture both wave and age
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effects.19 Controls Xi include gender, mother’s education, and father’s education,

for which I set missing values to zero and include dummies for missing values.

In more rigorous specifications, I add various combinations of location fixed effects

and location-specific trends in order to allow for differential long-term and seasonal

trends across geographic areas (including state-by-season fixed effects, state-by-

quadratic year trends, municipality-by-season fixed effects, and year-month fixed

effects).

I run these regressions for the full sample and then separately for men and

women. In order to explore whether gender-specific labor market conditions play

a role in determining schooling responses to shocks, I also estimate a specification

that interacts various labor market variables with the trimester coefficients of

interest.

I cluster the standard errors at the municipality level.20 As stated above, I am

restricted to individuals born in 1979 or later due to the availability of the NARR

data, and those who are at least 15 years of age in their most recent MxFLS

interview. Because I am identifying off of variation within municipalities over time

(controlling non-linearly for year and month effects), I also drop individuals in

municipalities with very small numbers of individuals (less than 30), which make

up less than 5% of the full sample.

19. These control for systematic differences across waves as well as systematic differences

across ages, in order to improve precision. Results are robust to the exclusion of these

interactions.

20. There are 150 municipalities in the final sample.
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5. Results

In this section, I begin by documenting the overall and gender-specific effects of

thermal inversions. I then investigate the labor market mechanisms driving the

gender differences that I find. Finally, I address potential threats to identification.

5.1. Main Results

Figure 1. Effects of Thermal Inversions on Raven’s Test Z-Scores
Notes: Intervals represent 95% confidence intervals. Controls include: birth month, birth year,
municipality of birth, survey wave by birth year fixed effects, state-specific quadratic year trends,
state-specific season dummies, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period. See
Table A1, column 2, for corresponding estimates.

To display my reduced form results, I graphically illustrate the estimated

coefficients from the specification described in equation (2), with the additional

inclusion of state-specific quadratic year trends and state-specific quarter of the

year dummies, hereafter referred to as season dummies. All corresponding tables,
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which include estimates from specifications with and without the state-specific

trends, are available in Appendix Section A.

Figure 1 reports the estimated effects of thermal inversions on cognitive ability,

measured by standardized Raven’s test scores. Thermal inversions in the second

trimester have a significant negative impact on Raven’s test scores. I do not find

any significant effects associated with any of the other three-month periods. This

is consistent with the medical and economic literature discussed in Section 2.2,

which flags the second trimester as a crucial period for brain development (Otake,

1998; Almond et al., 2009; Black et al., 2014; Schwandt, 2018; Morgan and Gibson,

1991).21

In contrast, Figure 2 shows no evidence of a robust relationship between

inversion exposure (in any period) and height, which is often used as a cumulative

measure of the quality of health and nutritional inputs early in life (Thomas and

Strauss, 1997; Maccini and Yang, 2009; Vogl, 2014) and has been shown to be

causally linked to fetal health measures like birth weight (Behrman and Rosenzweig,

2004; Black et al., 2007). These results suggest that thermal inversions did not

substantially hinder the physical development of fetuses and therefore that the

negative impact of in utero inversion exposure was primarily cognitive.

In order to study differences across gender, I run these regressions separately for

men and women. In the following figures, I plot the coefficients (and 95% confidence

intervals) for males and females on the same graph, reporting only the three

21. In the following set of results, I show that it is also the second trimester coefficient,

specifically, that has a significant impact on schooling and income outcomes, alleviating

concerns that its statistical significance in the cognitive ability regression is simply a result

of multiple hypothesis tests and Type 1 error.
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Figure 2. Effects of Thermal Inversions on Height Z-Scores
Notes: Intervals represent 95% confidence intervals. Controls include: birth month, birth year,
municipality of birth, survey wave by birth year fixed effects, state-specific quadratic year trends,
state-specific season dummies, gender, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period. See
Table A1, column 4, for corresponding estimates.

trimester coefficients (even though all regressions control for the remaining three-

month periods). In the Appendix, I report these trimester coefficients, along with

their differences and associated standard errors. The first panel of Figure 3 shows

that the second trimester estimates for the effect of inversions on Raven’s scores

are very similar in magnitude for males and females: -0.011 for females compared

to -0.013 for males, which are not significantly different from each other. Neither

coefficient is significant individually, likely due to the smaller sample sizes, but

given the significance of the negative effect in the full sample, the main takeaway

from this figure is that cognition appears to be affected by inversions in similar

ways for men and women. For height, in the second panel of Figure 3, there are no

significant gender differences.
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Figure 3. Effects of Thermal Inversions on Cognitive and Physical Health, by Gender
Notes: Separate regressions are conducted for men and women. * p< 0.1, ** p< 0.05, *** p< 0.01
are used to denote significant differences across genders. Intervals represent 95% confidence
intervals. Controls include: birth month, birth year, municipality of birth, survey wave by birth
year fixed effects, state-specific quadratic year trends, state-specific season dummies, mother’s
education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage
during each relevant 3-month period. See Table A2, columns 2 and 4, for corresponding estimates.
Although not plotted here, inversions in all other three-month periods are included in these
regressions and reported in Table A10.

It is important to note that the effects being estimated here are reduced

form effects: they are the result of the biological effects of pollution (via thermal

inversions) as well as a series of investments made by parents up until the age at

which the Raven’s tests are administered and height is measured.22 The purpose of

this analysis is not to tease out the biological effect from the investment responses,

as the data is not well-suited for this question: for the sample that I am using,

information on early parental investments is not available. What is important

for the goals of this paper is the fact that thermal inversions provide exogenous

22. See Cunha and Heckman (2007), Cunha and Heckman (2008), and Cunha et al. (2010)

for a commonly used dynamic framework for the production function of skill.
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variation in cognitive ability, which allows me to study how schooling decisions

respond to exogenously determined cognitive endowments.

In addition to the reduced form nature of these estimates, there are several

issues that complicate the interpretation of magnitudes. The quasi “first-stage”

regression of pollution on inversions uses data from a different time period than

the reduced form regressions discussed in this section. In addition, they show

that inversions affect more than one pollutant. This makes the calculation of a

dose-response function for a single pollutant impossible, if we acknowledge that

pollutants may interact in ways that are not well understood and that the effect of

inversions on pollution may change over time. Focusing only on the reduced form

effect of thermal inversions, however, a few useful comparisons can be made. First

of all, the coefficient on the thermal inversion variable is about one-third of the

effect of an additional year of maternal schooling. Secondly, Arceo et al. (2016)

document that an additional thermal inversion in a given week increased infant

mortality by 2% in that week, which suggests an additional thermal inversion

in a month would have increased infant mortality by 0.5%. Given this, a 0.01

standard deviation decrease in cognitive ability resulting from an additional average

monthly inversion during the second trimester seems reasonable: mortality is an

extreme event, and cognitive ability is measured much later in life, after a number

of (potentially reinforcing) investments could have been made. Finally, for all of

the coefficient estimates (in the previous as well as upcoming figures), it is not clear

how informative the exact point estimates are, given that the confidence intervals

are all rather wide.

With regard to magnitudes, another important consideration is that the effect

of thermal inversions on pollution may vary across space and over time (across

areas with varying levels of baseline pollution, for example). This means that the
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reduced form effects of thermal inversions may also vary across space and time.

As I argue in Section 2.3, the occurrence of a thermal inversion, after controlling

for all of the relevant fixed effects and weather controls, is random, and therefore

exogenous to any effect heterogeneity that may exist. The fact that my estimates are

not sensitive to the inclusion of state-specific trends, which controls for differential

trends across states that industrialized at different rates, for example, supports

this argument. Given this, I am able to recover consistent estimates of the average

reduced form effect of inversions across locations and time periods. The estimates

discussed in this section, therefore, should be interpreted as the average effect of

thermal inversions on the outcomes of interest, across all of the time periods and

locations included in this sample.

Figure 4. Effects of Thermal Inversions on Educational Attainment, by Gender
Notes: Separate regressions are conducted for men and women. * p< 0.1, ** p< 0.05, *** p< 0.01
are used to denote significant differences across genders. Intervals represent 95% confidence
intervals. Controls include: birth month, birth year, municipality of birth, survey wave by birth
year fixed effects, state-specific quadratic year trends, state-specific season dummies, mother’s
education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage
during each relevant 3-month period. See Table A3, columns 2 and 4, for corresponding estimates.
Although not plotted here, inversions in all other three-month periods are included in these
regressions and reported in Table A10.
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Having established that in utero exposure to thermal inversions acted as a

negative and primarily cognitive endowment shock that did not affect men and

women differentially, I next ask whether there were any differences in male and

female schooling responses to this shock. Clear gender differences are apparent

in Figure 4. Though both panels depict a similar pattern, the result is more

pronounced in the regression on high school completion: thermal inversions had a

significant negative impact on high school completion for women only. Like in the

cognitive ability regressions, the effect of an additional inversion on female high

school completion is equivalent to about one-third of the effect of an additional

year of maternal schooling. The male coefficient, on the other hand, is statistically

indistinguishable from zero, and significantly different from the female coefficient

at the 10% level.

High school graduation appears to be the only milestone affected by pollution:

Appendix Table A5 shows that in utero thermal inversions had no significant

impact on elementary school or junior high school completion for either gender.

Compulsory schooling laws are one potential reason why the effects only show up

for high school completion. Because most of the individuals in my sample were

required to attend at least 9 or 11 years of school, this could have limited the

responsiveness of milestones earlier than these required levels of schooling. At the

end of Section 6.2, I discuss another reason for the absence of effects on early

milestones of schooling: these effects are primarily driven by individuals expecting

to go into a white-collar job, who would be on the margin of completing high school.

Figure 5 reports the effects of thermal inversions on income, again by gender,

among those who reported work as their primary activity in the previous week.

This deliberately excludes individuals who may be working part time while still

in school and whose annual income would not be an appropriate measure of their
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labor market productivity. Once again, I find that thermal inversions in the second

trimester have a significant negative effect on female income. The fact that it is the

second trimester coefficient that is significant in this regression (as well as in the

cognitive ability and female high school completion regressions) alleviates concerns

that these statistically significant coefficients are just a result of Type 1 error from

multiple hypothesis tests.

The effect of second trimester inversions on men is smaller in magnitude and

not significantly different from zero, but still negative, sizable, and not significantly

different from the female coefficient. Unlike the high school completion results,

Figure 5 does not offer clear-cut evidence for stark gender differences. Although it

appears that inversions affected incomes primarily for women, there are also some

non-negligible effects on men, which would be consistent with existing examples

of early-life circumstances that significantly affected male labor market outcomes

despite having very little effect on their schooling decisions (Hoddinott et al., 2008;

Rosenzweig and Zhang, 2013; Politi, 2015).

These results should be interpreted with caution. Because this is a young sample

(aged 15 to 34), the estimated coefficients represent the effect of thermal inversions

on early career outcomes, which might be very different from the effects on lifetime

income. In particular, the career wage trajectories of men and women likely differ;

the direction and magnitude of the gender differences found here may not be the

same as those in lifetime income effects. These regressions also ignore selection into

the sample of working individuals: I do not, however find evidence that thermal

inversions affected the working decision for either gender (results available upon

request). Because of the limitations associated with the income analysis, I focus

in Section 6 on explaining the well-identified gender difference in the schooling

response.
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Figure 5. Effects of Thermal Inversions on Income, by Gender
Notes: Separate regressions are conducted for men and women. * p< 0.1, ** p< 0.05, *** p< 0.01
are used to denote significant differences across genders. Intervals represent 95% confidence
intervals. Controls include: birth month, birth year, municipality of birth, survey wave by birth
year fixed effects, state-specific quadratic year trends, state-specific season dummies, mother’s
education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage
during each relevant 3-month period. See Table A4, column 2, for corresponding estimates.
Although not plotted here, inversions in all other three-month periods are included in these
regressions and reported in Table A10.

5.2. Threats to Identification

5.2.1. Fertility Timing. The validity of the above analysis relies on the

assumption that mothers in a given municipality who experience many thermal

inversions during their second trimester are not systematically different from

mothers in that same municipality who experience fewer thermal inversions in

that same period. One way of testing this is to regress observable maternal

characteristics on the thermal inversion variables of interest. Columns 1 and 3

of Table 4 report the results of regressions of maternal years of schooling and an

indicator for whether an individual’s mother ever worked on thermal inversions
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in the second trimester.23 In both columns, there is no systematic relationship

between inversion exposure and these two maternal characteristics. In Columns 2

and 4, I report the regression results from running the entire specification used for

the above analysis (excluding the maternal and paternal schooling controls), with

these two maternal characteristics as dependent variables. None of the trimester

coefficients are significantly different from zero (and all are small in magnitude),

suggesting that, conditional on all of the fixed effects and weather controls, thermal

inversion exposure is truly exogenous to these maternal characteristics.

Of course, these two characteristics may not represent all of the observed

or unobserved dimensions that could be systematically correlated with thermal

inversion exposure. Perhaps the more relevant variables are those related to the

characteristics of the mother in the year before the child’s birth, which are not

available in this data set. For example, thermal inversions are more common in

winter, and pregnant mothers who are in their second trimester during winter give

birth in the spring. In areas where the maize harvest is in the spring, mothers

who choose to give birth in the spring might be less likely to be working in

agriculture, for example, than mothers who choose instead to give birth in the

fall. In the current specification, month fixed effects help account for this, but are

an incomplete solution if these seasonal effects vary over time or space. In order

to better control for time-varying or municipality-specific seasonal effects, I run

two additional specifications. In the first specification, I replace the state-season

fixed effects with municipality-season fixed effects. In the second specification, I

23. These are the only two maternal characteristics which are recorded in a comparable way

for individuals with parents living in the household and individuals whose parents do not live

in the same household.
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Table 4. Maternal Characteristics and Thermal Inversions

(1) (1) (2) (2)
Average monthly inversions… Mother's Education Mother's Education 1(Mother Worked) 1(Mother Worked)

BEFORE CONCEPTION
19-21 months before birth -0.00165 0.00145

(0.0172) (0.00235)

16-18 months before birth -0.0181 -0.00253
(0.0191) (0.00211)

13-15 months before birth -0.0318* -0.00182
(0.0185) (0.00270)

10-12 months before birth -0.0148 0.000651
(0.0180) (0.00256)

DURING PREGNANCY
Trimester 1 -0.00139 -0.00160

(0.0224) (0.00262)

Trimester 2 -0.000340 -0.00590 -0.0000635 0.00234
(0.0175) (0.0218) (0.00132) (0.00233)

Trimester 3 0.00846 0.00269
(0.0205) (0.00284)

AFTER BIRTH
0-2 months after birth -0.0101 -0.00275

(0.0175) (0.00245)

3-5 months after birth -0.00435 -0.000335
(0.0195) (0.00272)

6-8 months after birth 0.0122 0.00123
(0.0160) (0.00256)

9-11 months after birth 0.0211 -0.00249
(0.0193) (0.00249)

N 10322 9770 11104 10496
Mean of dependent variable 6.105 6.170 0.462 0.466
Basic Controls No Yes No Yes

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, ***
p< 0.01. The “Basic Controls” included in columns 2 and 4 include: birth month, birth year,
municipality of birth, and survey wave by birth year fixed effects, gender, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period.

keep these municipality-season fixed effects and replace the year and month fixed

effects with interacted year-month dummies. The latter allows for monthly trends

to differ non-linearly over time, which would be important if the incentives to time

births have changed over the two decade period spanning the birth years in my

sample. As Appendix Figures A3 and A4 show, my main results are robust to
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these specification changes: pollution significantly reduces Raven’s test scores for

the whole sample and high school completion for women only.

5.2.2. Mortality Selection. Given that in utero exposure to pollution is known

to affect infant mortality, one important concern is whether my results are being

driven by selective mortality. First, it is worthwhile to note that if the infants that

do not survive as a result of pollution exposure are mostly from the left tail of the

ability distribution, my estimated effects should be an underestimate of pollution’s

true impact. However, in order to verify whether selective mortality is an issue

in my setting, I check whether thermal inversions before birth have any effect

on cohort size or cohort gender composition. Using all individuals in the MxFLS

born 1979 to 1998 (the range of birth years in my sample), I calculate the total

number of individuals and fraction that is male for each birth municipality, birth

month, and birth year combination. With each observation representing a year-

month-municipality, I regress these aggregate values on thermal inversions during

pregnancy and in the year before and after. My results, reported in Table 5, show

no evidence for selective mortality in this sample.

While the absence of any pollution-driven changes in cohort size may seem

inconsistent with previous studies documenting a positive link between pollution

and infant mortality (Arceo et al., 2016; Jayachandran, 2009; Currie and Neidell,

2005; Chay and Greenstone, 2003), it does not necessarily rule out the possibility

that thermal inversions led to higher infant mortality in this sample as well. These

null effects are consistent with a situation in which thermal inversions increased

infant mortality by accelerating the deaths of infants who would have died before

reaching adolescence or adulthood in the absence of pollution. By the time I observe

my sample, pollution-driven changes in its composition do not appear to be a

substantial concern.
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Table 5. Effects of Thermal Inversions on Cohort Size and Gender Composition

(1) (2)
Average monthly inversions… Cohort size Fraction male

BEFORE CONCEPTION
19-21 months before birth -0.00365 -0.000975

(0.00317) (0.00271)

16-18 months before birth -0.00162 0.000462
(0.00309) (0.00258)

13-15 months before birth 0.00464 -0.00186
(0.00313) (0.00275)

10-12 months before birth 0.00358 0.00171
(0.00347) (0.00251)

DURING PREGNANCY
Trimester 1 0.00194 -0.000884

(0.00319) (0.00244)

Trimester 2 0.00170 -0.000700
(0.00345) (0.00279)

Trimester 3 -0.00536 -0.000376
(0.00447) (0.00236)

AFTER BIRTH
0-2 months after birth -0.000776 -0.000238

(0.00384) (0.00241)

3-5 months after birth 0.000450 -0.00199
(0.00363) (0.00262)

6-8 months after birth -0.000941 -0.000740
(0.00327) (0.00247)

9-11 months after birth -0.00427 -0.00102
(0.00347) (0.00301)

N (municipality-year-months) 11078 11067
Mean of dependent variable 1.323 0.477

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05,
*** p< 0.01 In these regressions, each observation represents a unique municipality-month-year
combination. All regressions control for month, year, and municipality fixed effects, cubic functions
of average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period.

5.2.3. Adjusted Raven’s Scores. Previous work has documented significant

gender differences in performance on Raven’s tests (Mackintosh and Bennett, 2005),

driven by different success rates with specific types of questions. In particular, males
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often outperform females on questions that require the use of two rules (addition

or subtraction of figures, and distribution of two – see Mackintosh and Bennett

(2005) for a more detailed discussion). As shown in Table 3, males perform slightly

better than females in my sample. Though small in magnitude, this difference is

statistically significant.

Fortunately, these gender differences do not affect the identification of gender

differences in the effects of thermal inversions on high school completion (which

are analyzed separately from Raven’s test scores). One concern, however, might

be that Raven’s tests are a poor measure of cognitive ability for women (due to

the issue described above) and that I am underestimating the effect of thermal

inversions on female cognitive ability.24 In other words, the true effect of thermal

inversions on female scores could be significantly larger than the true effect for

men, which could mean that my high school completion differences are simply the

result of larger cognitive ability effects for women. Because this has important

implications for the investigation of mechanisms in the next section, I investigate

in Table A6 whether this alternative interpretation is plausible. To do this, I adjust

the Raven’s test scores by removing the two questions that require the use of the

addition or subtraction of figures or the distribution of two rules. This narrows the

gender gap in Raven’s test scores in my sample. I then repeat the analysis on these

adjusted scores and report the results in Table A6. Like in Figure 3, the difference

between the male and female coefficients is small in magnitude and not statistically

significant, suggesting that the initial results were not masking larger underlying

gender differences in the cognitive effects.

24. This would require non-classical measurement error in the Raven’s as a measure of true

cognitive ability for women but not for men.
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6. Labor Market Mechanisms

Having established that the schooling decisions of men and women respond

differently to an exogenous shock to cognitive ability, I now investigate what labor

market conditions might be driving this gender difference. I begin with a simple

model, which highlights three potential labor market explanations. I then move on

to empirical tests of these different channels.

6.1. Conceptual Framework

Suppose individuals are born with an ability endowment θ, which I measure in

the data using Raven’s test scores. As adults, individuals can work in one of

two occupations: white-collar (k = w) or blue-collar (k = b), defined by the

categorizations in Table 1.25 They can also remain out of the labor force (k = n).

Each alternative has a different wage function, where schooling S and ability θ are

rewarded differently.

These functions capture the idea that worker characteristics command different

prices in different occupations (Heckman and Scheinkman, 1987) and that schooling

and ability may exhibit non-separabilities that vary across sectors, which is reflected

in the descriptive evidence in Figure 6. This figure illustrates the relationship

between income and ability for individuals with different jobs and different levels of

education. I plot the relationship between annual income and Raven’s test scores,

separately for four different schooling-occupation combinations: white-collar high

25. Note that blue-collar jobs include both agricultural and factory work. Women who carried

out agricultural activities for no pay to help with household consumption are counted as

working, in both the MxFLS and the census.
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school graduates, white-collar non-graduates, blue-collar high school graduates, and

blue-collar non-graduates. Interestingly, the gap between high school graduates and

non-graduates is increasing in ability in white-collar occupations, but decreasing

in ability in blue-collar occupations. This can be seen in the widening of the

gap between the two white-collar lines and the slight narrowing of the gap

between the two blue-collar lines. Although this figure does not take into account

selection into occupation types or schooling, it offers suggestive evidence that the

complementarity between schooling and ability is higher in white-collar than in

blue-collar jobs.26

Figure 6. Income-Ability Relationship
Notes: Lines depict local linear regressions using individuals aged 25 to 65 in the MxFLS. Blue-
collar and white-collar jobs are identified using CMO codes and the classifications in Table B1.
Income is total earned annual income measured in 2002 Mexican pesos and winsorized at the 99th
percentile.

26. These conclusions are also supported by the estimates from a dynamic discrete choice

model that endogenizes schooling and occupational choice (Molina, 2019).
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I denote the occupation-specific expected wage functions as

Wk(S, θ)

Individuals can also remain out of the labor market, denoted by k = n. The

reward function in the home sector takes a similar form (Wn(E, θ)), and can be

interpreted as the utility individuals would enjoy if they did not work (which

could be a function of their marriage decisions, bargaining power in marriage,

productivity in home production, etc.).

The opportunity cost of schooling takes the following form:

c(S, θ),

where ∂c/∂S > 0 and ∂2c/∂S2 > 0.

Expected wages are given by

qpWw(S, θ) + q(1− p)Wb(S, θ) + (1− q)Wn(S, θ),

where q represents the expected probability of an individual entering the labor force

and p represents the expected probability of an individual going into a white-collar

job, conditional on being in the labor market.27

27. For parsimony, p and q are fixed parameters. In a previous draft of this paper, I work with

a model that allows for p and q to vary with S and θ and reach similar conclusions (Molina,

2019).
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Individuals pick the optimal level of education S to maximize their expected

future rewards, net of the cost of schooling, as in the maximization problem

below:28

max
S

E [W (S, θ)]− c(S, θ).

The optimal schooling response to a positive shock to cognitive ability (θ) is:

dS∗

dθ
= −

[
∂2E [W (S, θ)]

∂S∂θ
− ∂2c

∂S∂θ

][
∂2E [W (S, θ)]

∂S2
− ∂2c

∂S2

]−1

. (3)

The sign of this term depends on the numerator (as the denominator is negative

by assumption). The numerator involves the cross-partials between schooling and

28. By choosing to model only the schooling decision, which is the focus of this paper, I

assume that any major investments parents might make to change θ take place before the

crucial schooling decisions are made. This assumption is consistent with the well-documented

finding that there are higher returns to investing in a child’s skill formation early in life (before

primary school) compared to later on (Cunha et al., 2010; Heckman, 2006). Moreover, for

children in Mexico, the end of primary school marks the first critical schooling transition

period when many drop out (Behrman et al., 2011).
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ability in the various wage functions and in the opportunity cost function:29

pq
∂2Ww

∂S∂θ
+ (1− p)q

∂2Wb

∂S∂θ
+ (1− q)

∂2Wn

∂S∂θ
− ∂2c

∂S∂θ
. (4)

There are three clear ways the expression in (4) might vary for men and

women. As discussed in Section 2.1, men and women differ in their labor force

participation rates (in adulthood as well as in school), as well as in their tendencies

to take up white-collar over blue-collar jobs. This has implications for their expected

probability of entering the labor force (q), their expected probability of taking a

white-collar job (p), and their opportunity cost function (c(S, θ)).

6.1.1. Labor Force Participation. In Mexico, during the decade spanned by

the three waves of the MxFLS, men are much more likely to be in the labor force

than women, which means they face a higher q (expected likelihood of labor force

participation). Because q acts as a weight on the various cross-partials in (4), this

would generate larger schooling responses for women than men if certain conditions

hold: specifically, if the degree of complementarity between schooling and ability

is higher in the home sector than in the labor force. Unlike wages, home-sector

rewards are abstract and difficult to measure; it is not clear, therefore, whether

this condition is likely to hold. However, what I am able to test is whether the

29. It is important to note that this schooling response depends on the cross-partials between

schooling and ability in the various wage and cost functions, not the returns to ability in each

job type (∂Wk/∂θ). To state this in terms of the data used in this analysis, the response of

schooling to changes in Raven’s scores depends on how fluid intelligence and schooling interact

in the various alternative-specific wage functions and opportunity cost function (∂2Wk/∂S∂θ

and ∂2c/∂S∂θ). Notably, this does not require Raven’s scores to capture a type of ability

valued more in one job type than another (which depends on differences in ∂Wk/∂θ across k).
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schooling response to thermal inversions (a cognitive ability shock) varies with

proxies for q, which will help shed light on the importance of this mechanism.

6.1.2. White-Collar versus Blue-Collar Decision. Conditional on being in

the labor force, women are much more likely to be in a white-collar job than men,

both in Mexico (Table 1) and more generally across the globe (Appendix Figure

A2). Because women have a higher p (expected likelihood of a white-collar job)

than men, they should exhibit larger schooling responses to a cognitive shock if

schooling and ability are more complementary in white-collar jobs than in blue-

collar jobs (∂2Ww/∂S∂θ > ∂2Wb/∂S∂θ). The descriptive evidence in Figure 6

suggests that this is indeed the case.30

With respect to the data used in the empirical analysis, this condition

(∂2Ww/∂S∂θ > ∂2Wb/∂S∂θ) means that schooling amplifies the returns to fluid

intelligence in white-collar jobs to a greater extent than in blue-collar jobs. I

argue this is consistent with the following intuition. Suppose that fluid intelligence

captures an individual’s ability to learn new skills, and that education provides

individuals with knowledge and skills that are useful primarily in white-collar jobs,

not blue-collar jobs, and difficult to learn elsewhere. Then, a high-ability individual

with little education will not earn higher wages than a low-ability individual with

little education in a white-collar job, as neither have had the opportunity to learn

skills that are important for that type of job. For educated individuals, however,

ability will increase the amount (or quality) of skills acquired and therefore eventual

wages in a white-collar job. In contrast, in blue-collar jobs, where the knowledge and

30. Structural estimates from a previous version of this paper, which account for

the endogeneity of the schooling and occupation choice, also reveal significantly higher

complementarities in white-collar than blue-collar jobs (Molina, 2019).
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skills learned through education are not as important, ability can improve wages

for an individual regardless of education. This will generate a complementarity

between fluid intelligence and schooling in white-collar jobs, but not in blue-collar

jobs, where schooling and ability would be more substitutable.

6.1.3. Opportunity Costs. Finally, men and women might face different

opportunity cost functions (c(S, θ)). As discussed in Section 2.1, school-aged boys

are more likely to be working than school-aged girls, which suggests that potential

wages in the child labor market (perhaps the most important component of the

opportunity cost) are different. In particular, the higher employment rates among

school-aged boys could reflect a greater complementarity between schooling and

ability in the opportunity cost function. If this complementarity (∂2c/∂S∂θ) is

higher for boys than for girls, this would also drive larger female schooling responses

to a cognitive shock.

6.2. Empirical Evidence

In order to empirically investigate how these three mechanisms contribute to the

gender difference that I document, I allow for the effect of thermal inversions to

vary by various gender-specific labor market characteristics that proxy for q, p, and

∂2c/∂S∂θ.

To proxy for an individual’s expected probability of going into the labor force

(or a white-collar job), I calculate the gender-specific share of adults that are in

the labor force (or a white-collar job) in an individual’s local labor market during

a critical school transition period.31 Like Rosenzweig and Zhang (2013), I focus on

31. Although it is difficult to capture expectations without subjective expectations data, the

existing literature suggests current labor market conditions can serve as a reasonable proxy
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the local labor market in which a child is residing at age 12. In Mexico, the end

of primary school is a critical transition period during which a large proportion of

children drop out (Behrman et al., 2011). Moreover, for the majority of individuals

in my sample, I have data on their municipality of residence at age 12 specifically.

That is, I know whether individuals were living in their municipality of birth (which

I have in the data) at age 12, their municipality of current residence (which I have in

the data) at age 12, or neither. For individuals in the last category, who make up less

than 10% of the sample, I assign them to their municipality of birth, acknowledging

that there will be some measurement error, because municipality of residence at

age 12 is a restricted-use variable.

Expectations about the cross-partial between schooling and ability in the

opportunity cost function are less straightforward to measure. To proxy for these

expectations, I use the gender-specific employment rate among school-aged youth

(aged 12-16) and gender-specific average income among school-aged youth in

an individual’s local labor market at age 12. I argue that higher employment

probabilities and wages are an indication of a child labor market that rewards

worker skill (rather than just paying a fixed child wage rate), which would allow

for greater complementarity between schooling and ability.

for these expectations about future employment. For example, Jensen (2010) finds that 70%

of survey respondents in the Dominican Republic report that people in their community were

their main source of information about expected earnings. Similarly, Nguyen (2008) shows that

information about current labor market conditions can affect parental and child expectations

about future returns. In a slightly different context, Attanasio and Kaufmann (2017) use current

conditions in the marriage market – gender ratios for various education categories – to proxy

for marriage market expectations.
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For the following analysis, I use data from the Mexican census to calculate

these gender-specific local labor market characteristics. As described in Section

3.2, I use linear interpolation between census years in the main specification. I

create an indicator equal to 1 if the relevant gender-specific labor market measure

falls in the top quartile of the overall distribution. Appendix Table A7 repeats the

analysis using other methods of interpolation and continuous instead of discrete

variables.

I begin by reporting, in column 1 of Table 6, the trimester coefficients from the

fully-interacted specification used to generate the second panel of Figure 4, which

demonstrates the significant gender difference in the effect of thermal inversions

on high school completion. In the remaining columns, I add interactions between

inversions in each period and one of the four gender-specific labor market indicators

described above. This allows me to investigate the extent to which the initial gender

difference is being driven by gender-specific labor market opportunities.

Column 2 of Table 6 investigates the effect of labor force participation

expectations (q). After the inclusion of these labor force participation interaction

terms, the effect of inversions on female high school completion is still negative and

significant, and the gender difference (though no longer statistically significant)

is still large in magnitude. Notably, there is no significant heterogeneity in the

effect of second trimester inversions across individuals facing different probabilities

of entering the labor force. Expectations about labor force participation do not

appear to be an important determinant of schooling responses.

The limited role of labor force participation could be an indication that

adult female labor force participation rates do not adequately represent the

labor force participation expectations of young girls, especially during a period

of rapidly changing female labor market opportunities. For example, a 2005 survey
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Table 6. Effects of Thermal Inversions on High School Completion, by Gender-Specific
Labor Market Characteristics

(1) (2) (3) (4) (5)

Average monthly inversions…
HS 
Completion

HS 
Completion

HS 
Completion

HS 
Completion

HS 
Completion

Trimester 1 0.363 0.338 0.215 0.342 0.292
(0.353) (0.354) (0.486) (0.355) (0.353)

Trimester 2 -0.792*** -0.802*** -0.0368 -0.809*** -0.775**
(0.299) (0.299) (0.431) (0.299) (0.310)

Trimester 3 0.179 0.164 -0.0141 0.165 0.162
(0.311) (0.313) (0.508) (0.314) (0.316)

Trimester 1 -0.423 -0.438 -0.384 -0.335 -0.580
x 1(Male) (0.478) (0.562) (0.566) (0.486) (0.543)

Trimester 2 0.771* 0.680 0.177 0.692* 0.920**
x 1(Male) (0.405) (0.477) (0.477) (0.407) (0.438)

Trimester 3 0.112 0.0426 0.171 0.0582 0.0254
x 1(Male) (0.431) (0.471) (0.522) (0.426) (0.493)

Trimester 1 -0.0146 0.182 -0.325 0.290
x 1(Labor market variable in top 
quartile)

(0.443) (0.391) (0.482) (0.377)

Trimester 2 0.197 -0.901** 0.460 -0.250
x 1(Labor market variable in top 
quartile)

(0.437) (0.380) (0.477) (0.360)

Trimester 3 0.118 0.198 0.165 0.0943
x 1(Labor market variable in top 
quartile)

(0.434) (0.401) (0.475) (0.348)

N 10715 10689 10677 10689 10689
Dependent variable mean 26.58 26.51 26.47 26.51 26.51

Labor market variable None
Labor force 
participation

White-collar 
proportion

Youth (12-16) 
employment

Youth (12-16) 
income

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, ***
p< 0.01. Coefficients scaled to represent percentage points. All regressions control for the following
variables and their interactions with a male indicator (as well as the main effect of gender): birth
month, birth year, municipality of birth, and survey wave by birth year fixed effects, mother’s
education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage
during each relevant 3-month period, as well as inversions in all other three-month periods. The
main effect of the relevant labor market dummy and its interactions with inversions in all other
three-month periods are also included. Individuals are assigned to labor market variables in their
commuting zone of residence at age 12, and linear interpolation is used to interpolate between
census years.

that collected subjective expectations data in Mexico shows that teenage boys

and girls had identical expected probabilities of going into the labor force as
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adults (Attanasio and Kaufmann, 2014), which could indicate that the males and

females in my sample actually had similar expectations about future labor force

participation (despite the higher actual rates of labor force participation among

men). Another possibility relates to the complementarity terms: equation (4)

shows that labor force participation expectations (q) will only affect the schooling

response if there is a gap between the schooling-ability complementarities in the

labor market and in the home sector. However, home sector complementarities

might simply be a reflection of the complementarities in the labor market, if

(for example) a woman’s potential wage influences the quality of her spouse

(Chiappori et al., 2012; Lam, 1988) and bargaining power in a marriage, even

if she does not work (Qian, 2008; Heath and Mobarak, 2015; Majlesi, 2016). Under

these conditions, even for women who do not participate in the labor force, the

home sector reward function might closely reflect the expected wage functions

(conditional on labor force entry), resulting in little scope for different labor force

participation expectations to drive gender differences in the schooling response.

Unlike labor force participation, white-collar proportions do seem to be

important. In column 3 of Table 6, the negative effect of second trimester inversions

on high school completion is concentrated among individuals more likely to go into

a white-collar job. The coefficient on the second trimester interaction is negative

and significant at the 5% level, while the main effect (which represents the effect on

women with limited white-collar opportunities) is much smaller and insignificant.

The finding that the negative effect of thermal inversions is concentrated on

individuals with more exposure to white-collar jobs helps explain why inversions

only had effects on high school completion (and not lower schooling milestones):

individuals who expect to go into a white-collar job (where the vast majority of

workers have a high school degree, as shown in Figure A1) are likely to be on the
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margin of high school completion. A cognitive shock for these individuals should

therefore have the strongest effects on this margin.

Importantly, the gender difference that appears in column 1 completely

disappears when the white-collar interactions are included in column 3: the male

interaction is much smaller in magnitude than the white-collar interaction and

insignificant. The drastic decrease in the second trimester male interaction with the

inclusion of the white-collar interactions demonstrates that the gender difference

in this context is driven by the different occupational choices made by men and

women.

Finally, columns 4 and 5 investigate the role of the opportunity cost function,

by including interactions with youth employment rates and average youth wages.

Like labor force participation, these variables do not appear to be important in

explaining the gender difference that appears in column 1, which remains significant

after the inclusion of each set of child-labor-related interactions. In addition, the

effect of second trimester inversions does not exhibit any heterogeneity with respect

to these variables: the interactions between second trimester inversions and these

indicators are small and statistically insignificant. I acknowledge, of course, that

these variables are not direct measures of ∂2c/∂S∂θ, which could result in an

underestimation of the importance of this channel.

In summary, this empirical exercise provides support for only one of the three

labor market mechanisms discussed above. Gender-specific white-collar proportions

fully explain the gender difference in the schooling response to second trimester

thermal inversions. The significant negative effect of inversions on high school

completion is driven by individuals more likely to go into white-collar jobs, where

schooling and ability are more complementary.
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6.3. Alternative Explanations

In this investigation of labor market mechanisms, I have interpreted the gender-

specific white-collar shares as representing individuals’ expected probabilities of

going into a white-collar job. This interpretation may be flawed, however, if these

white-collar shares are simply capturing the effects of omitted variables that are

correlated with these shares.

6.3.1. Non-Linear Thermal Inversion Effects. For example, if white-collar

proportions are correlated with higher pollution levels (due to greater economic

activity and urbanization, for example), we might expect to see stronger negative

effects in high white-collar areas due to a non-linear relationship between thermal

inversions and pollution. That is, if thermal inversions exacerbate pollution more in

highly polluted areas (compared to less polluted areas), this would lead to larger

reduced form effects in highly polluted areas. It is important to note, however,

that while this could explain the significant negative coefficient on the interaction

between white-collar proportions and thermal inversions, it would not be able to

explain why the gender difference disappears after controlling for these variables.

In addition, this alternative explanation is ruled out by the evidence presented

in Table A8. Here, I repeat the analysis conducted in Table 6, instead using

cognitive ability as the dependent variable. If the high white-collar proportions

were simply capturing larger effects in more polluted areas, there should also be

stronger negative effects on cognitive ability in high white-collar areas. However,

in the cognitive ability regression in Table A8, I find no differential effect across

white-collar shares, and the effect sizes (for males and females) are not affected by

the inclusion of these labor market controls.
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6.3.2. Correlated Labor Market Variables. White-collar shares might also

be correlated with other labor market characteristics. In order for an omitted

variable to be driving both the significant negative white-collar interaction and

the disappearance of the gender difference in Table 6, it has to be gender-specific

(like the white-collar proportion variables I construct) and on average different

for men and women. In particular, I need only to be concerned about variables

that are correlated with white-collar proportions, within each gender, and which

have different means for men and women. Variables that are positively (negatively)

correlated with white-collar proportions and which are on average higher (lower)

for women than for men are a concern. Fortunately, most correlates of white-collar

shares do not fulfill this criteria.

For example, one might be concerned that high white-collar shares for a

particular gender represent higher income or better job opportunities, specifically

for that gender. Unlike white-collar shares, however, incomes are on average higher

for men than women, which means that this variable would not be able to generate

the pattern of results in Table 6. Another concern is that high white-collar shares

could be related to features of the marriage market. Specifically, high white-collar

shares for a particular gender may be associated with later marriage or later

parenthood for that gender. However, in order for this to produce the pattern

of results in Table 6, men would have to marry and have children at a younger

age than women on average, which is not the case. It is unsurprising, then, that

the coefficient estimates remain similar to those in Column 3 of Table 6, when I

include thermal inversions interacted with zone-level gender-specific average income
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and zone-level gender-specific shares of ever-married individuals aged 18-25 (see

columns 1 and 2 of Appendix Table A9).32

Though gender-specific incomes and gender-specific marital and fertility

behavior were unlikely to be valid alternative explanations for my results in Column

3 of Table 6, gender-specific agricultural industry shares do satisfy the criteria of

being negatively correlated with white-collar proportions (within gender) and on

average lower for women than men. If agricultural shares (which are defined by

industry) rather than white-collar shares (which are defined by occupation type)

are responsible for the results in Table 6, this would rule out white-collar shares

as the main mechanism. I therefore repeat the analysis conducted in Table 6, this

time including interactions between thermal inversions and agricultural industry

shares. The inclusion of these interactions does not affect any coefficients from the

previous regressions. In column 3 of Appendix Table A9, I still find that there are

significantly larger negative effects for individuals living in high white-collar areas,

and no significant differences across individuals exposed to different agricultural

industry shares.

6.3.3. Son Preference. Another explanation that may come to mind is son

preference: only female schooling is negatively affected by cognitive shocks because

males are treated preferentially. It is difficult to reconcile this explanation with

the finding that the gender difference becomes insignificant with the inclusion of

the white-collar share interactions. If the larger negative effect of inversions on

32. I use the gender-specific share of ever-married individuals aged 18-25 as a proxy for early

marriage and parenthood because the decennial census does not include questions about age of

first marriage or first child for both men and women. Results are robust to the use of younger

age cutoffs.

51



female schooling was driven by son preference, or parental beliefs that men should

complete high school no matter their ability level, the gender difference would

persist even after controlling for gender-specific white-collar opportunities.

However, if preferences for particular genders are correlated with white-collar

shares, this could still generate this specific pattern of results – but only under

specific conditions, which I argue are unlikely. Suppose white-collar shares are

correlated with a “preference” or “cultural norms” variable: either the preference

for a specific gender in a specific location, or the cultural expectation that a

given gender will complete high school in that location. The results in Table 6

revealed that there were stronger negative effects for those exposed to high white-

collar shares. In addition, women have higher white-collar shares than men. For

these two facts to be consistent with a son preference argument, high white-collar

shares would have to be proxying for lower preference, which is somewhat counter-

intuitive. If a particular gender is preferred or expected to complete high school

regardless of ability, the natural assumption would be that they would also be

expected to go into higher-paying white-collar jobs.

In addition, if son preference were the main reason for the gender difference

that I find, the gender difference should be largest in regions with more gender

inequality. Frias (2008) constructs a gender equality index for each of the 32

Mexican states and documents substantial heterogeneity across the states. I use

this index, along with several other indicators, to test whether gender differences

are strongest in states with higher gender inequality. In addition to the Frias (2008)

index, I also calculate state-level male-to-female sex ratios for children under 3 and

children under 5 years old, using the 1970 census, which was the last census that

preceded all of the birth years in my sample. Differential child mortality due to son

preference would manifest in higher male-to-female sex ratios. For my last measure
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of son preference, I calculate each state’s average rank across all three measures.

Using each of these measures, I split the states at the median and repeat my

gender-specific regressions for above-median (high inequality) and below-median

(low inequality) states. Appendix Figure A5 summarizes the results of this exercise.

Keeping in mind that splitting the sample into two groups (and then cutting

by gender) substantially reduces statistical power for detecting significant gender

differences, I interpret the results by comparing the magnitudes of the coefficients as

well as the gender gaps. Across all groups (both high and low inequality according

to various definitions), the second trimester inversion coefficients for women are

of very similar magnitudes. The coefficient that is largest in magnitude is, in

fact, estimated from a low inequality group (defined by the under 5 sex ratio),

which is the opposite of what we would expect if son preference were an important

mechanism. Importantly, the gaps between the male and female coefficients are

also fairly constant across high and low inequality groups. None of these results

are consistent with son preference being the driving force behind the schooling

gender difference.

6.3.4. Gender-Specific Returns to Reservation Wage. For parsimony, the

model above made important simplifying assumptions, including the assumption

that labor force participation probabilities are not affected by schooling or ability.

However, reservation wages might vary for men and women (given their vastly

different labor force participation rates), and in addition, these reservation wages

might be differentially affected by schooling and ability for each gender. As the

model does not allow for labor force participation probabilities to vary with ability

or schooling, I investigate empirically the extent to which gender differences in the
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schooling-participation relationship could be driving my results.33 The answer to

this depends crucially on how the effect of schooling on labor force participation

varies across gender, geographic area, and correlates with white-collar proportions

across areas.

Figure A6 sheds some light on these relationships. In this scatterplot, the y-

axis represents white-collar probabilities and the x-axis represents the schooling

coefficient in a regression of labor force participation on years of schooling

(controlling for age fixed effects) – that is, an estimate of the return to schooling

in terms of labor force participation (which reflects reservation wages). Each point

represents a different gender-state combination from the census. First, I note that

the coefficients, which represent the effect of schooling on labor force participation,

are all smaller for men than for women. In order for these gender-specific schooling

effects on labor force participation to be driving the main results documented

above (which rely on geographic variation in labor market conditions),34 they would

have to demonstrate sufficient variation across geographic areas, and be positively

correlated with white-collar shares within each gender.

Figure A6 shows that neither of these conditions appear to hold. First, there is

not much variation across the coefficient estimates across states: for both women

and men, the range is less than 2 percentage points. Second, the correlations

between these estimates and white-collar shares are neither strong nor consistent

across genders: they are 0.08 for women and -0.17 for men. For comparison, the

33. Because census data is required for this analysis, I am unable to conduct the analogous

analysis for the ability-participation relationship, as cognitive ability is only available in the

MxFLS.

34. Both the gender difference and its disappearance after controlling for white-collar shares
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variables explored in Table 6 (income, agricultural industry shares, and ever-

married shares of 18-25 year-olds) are much more strongly correlated with white-

collar shares, and these correlations are consistent in sign across genders.35

The small magnitudes and opposing signs of the correlations depicted in

Figure A6 provide no support for the hypothesis that the gender difference in

the schooling response is being driven by different returns to schooling in the

reservation wages (and therefore labor force participation probabilities) of men

and women. Unfortunately, I am unable to conduct the same test using cognitive

ability, which is not available in the census. Therefore, I cannot definitively rule out

gender-specific returns to cognitive ability in the reservation wage as an alternative

explanation. However, the fact that the reservation wage returns to schooling

are largely uncorrelated with white-collar proportions and demonstrate limited

variation across geographic regions does help alleviate concerns about this being a

major driver of the results.

7. Conclusion

Using thermal inversions as an exogenous source of variation in pollution levels, this

paper documents that in utero exposure to pollution leads to significantly lower

cognitive ability in adolescence and adulthood. Although there exists substantial

prior evidence documenting the large, contemporaneous health costs of pollution (in

terms of disease and premature death), this striking result expands our knowledge

35. For agricultural industry shares, the correlation is -0.78 for men and -0.71 for women; for

income, 0.59 for men and 0.57 for women; for ever-married shares, -0.58 for men and -0.21 for

women.
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on this topic by providing evidence of long-run consequences, evidence of effects

on cognitive ability, and evidence from a middle-income country.

Even though the negative effects on cognitive ability are present (and similarly

sized) for both men and women, in utero pollution exposure appears to only

affect the schooling decisions and income of women. Importantly, I show that

the gender difference in the schooling response is driven by the different labor

market opportunities men and women face. In particular, women are more likely

to end up in white-collar jobs, where schooling and ability exhibit a higher degree of

complementarity than in blue-collar jobs, and therefore adjust their schooling more

in response to this early-life cognitive shock. In fact, gender-specific white-collar

shares turn out to fully explain the gender difference in the schooling response that

I document.

This is an important finding for the early-life literature, where gender

differences are often documented but where proposed explanations for these

differences are rarely tested. In general, these results help explain the substantial

heterogeneity in the magnitudes of the estimated effects of early life shocks, both

across and within studies. Much of the variation could be due to heterogeneity

in labor market conditions across settings or sub-groups, which highlights the

importance of considering the labor market when interpreting existing results or

designing future interventions.

This paper joins Pitt et al. (2012) and Rosenzweig and Zhang (2013) in

underscoring that gender-specific comparative advantage affects how males and

females respond to shocks. It also offers evidence that parents and individuals

respond to expectations about future labor market opportunities, which is

consistent with related studies that use subjective expectations data (Kaufmann,

2014; Attanasio and Kaufmann, 2014). Finally, the results also speak to a broader
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literature documenting that labor market conditions, including current and future

job opportunities, affect schooling decisions in general (Jensen, 2012; Atkin, 2016;

Shah and Steinberg, 2015).

These results contribute to the literature on gender gaps in labor market

outcomes by providing another potentially important explanation for the large

relative gains in female education and employment outcomes that have been

observed across the globe over the past few decades (Goldin, 1995; Mammen and

Paxson, 2000; Rendall, 2017; Olivetti, 2014; Bhalotra et al., 2015; Pitt et al., 2012;

Rosenzweig and Zhang, 2013).36 Because female schooling responds more strongly

to cognitive ability shocks than male schooling does, a sustained improvement

in population intelligence levels, which has been observed in many contexts,

repeatedly documented, and dubbed the “Flynn effect” (Trahan et al., 2014; Flynn,

1984), could have given rise to these larger improvements for women.

36. Previous literature has emphasized other important explanations for this phenomenon.

For instance, many of the aforementioned studies argue that economic growth can generate

improved economic outcomes for women precisely because it spurs the rise of a less physical

sector, while Pitt et al. (2012) and Rosenzweig and Zhang (2013) argue that improvements

in physical health and nutrition have played a role in these large relative improvements for

women.
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Online Appendix

Pollution, Ability, and Gender-Specific Investment

Responses to Shocks

Teresa Molina

Appendix A: Additional Figures and Tables

• Figure A1 illustrates the education distributions of adults aged 25-65 in the

2000 and 2010 Mexican census – for the overall population, for white-collar

workers, and for blue-collar workers.

• Figure A2 reports white-collar to blue-collar ratios among men and women

aged 25-65, across six countries using the 2010 census.

• Figures A3 and A4 show the robustness of the main results (on cognitive scores

and high school completion) to the inclusion of additional fixed effects.

• Figure A5 reports the second trimester coefficients in the male and female

regressions on high school completion, separately for states with above-median

and below-median son preference (defined in four different ways).

• Figure A6 depicts the relationship between state-level, gender-specific white-

collar shares and the coefficient in a (state- and gender-specific) regression of

labor force participation on schooling (controlling for age fixed effects), using

the 2000 and 2010 Mexican census.

• Tables A1 to A4 provide the coefficient estimates, standard errors, and

observation counts for the graphs in Section 5.1. For each variable, the first

column includes the basic fixed effects (municipality, month, and year) and

the second adds state-specific season fixed effects and state-specific quadratic

1



trends. Table A5 provides the coefficient estimates from identical regressions

that use elementary and junior high school completion as dependent variables.

• Table A6 reports the coefficient estimates in a regression of adjusted Raven’s

test scores on thermal inversions, using the basic specification (with state-

specific trends in column 2). Adjusted Raven’s test scores remove 2 questions

of a particular type that have been noted to exhibit gender differences

(Mackintosh and Bennett, 2005).

• Table A7 demonstrates the robustness of the labor market mechanism results

to the use of alternative methods of constructing the labor market variables.

Columns 1, 4, 6, and 8 assign individuals with the relevant labor market

variable from the closest census to the year in which they turned 12. Columns

3, 5, 7, and 9 report the results from using a continuous version of the discrete

measure used in Table 6. Column 2 uses a discrete measure that assigns

inter-censal white-collar proportions using the shift-share strategy described

in Section B.4.

• Table A8 repeats the analysis conducted in Column 3 of Table 6, except using

Raven’s test scores as the dependent variable.

• Table A9 repeats the analysis conducted in Column 3 of Table 6, but adds

interactions between thermal inversions and three other variables: gender-

specific average income, the gender-specific share of 18-25 year-olds who were

ever married, and gender-specific agricultural industry shares.

• Table A10 reports all of the pre-conception and post-birth coefficients from the

male and female regressions on Raven’s scores, height, years of schooling, high

school completion, and annual income.
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Figure A1. Education Distributions by Occupation Type
Notes: Weighted proportions calculated from adults aged 25 to 65 in the 2000 and 2010 Mexican
census. Blue-collar and white-collar jobs are identified using ISCO occupation codes and the
classifications in Table 1.

Figure A2. White-Collar to Blue-Collar Ratios Across Countries, by Gender
Notes: Ratios calculated using weighted counts of adults aged 25 to 65 in the 2010 censuses of
the listed countries. Blue-collar and white-collar jobs are identified using ISCO occupation codes
and the classifications in Table 1.
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Figure A3. Effects of Thermal Inversions on Raven’s Test Z-Scores, with Additional
Fixed Effects
Notes: Intervals represent 95% confidence intervals. All regressions control for birth month, birth
year, municipality of birth, and survey wave by birth year fixed effects, state-by-quadratic year
trends, gender, mother’s education, father’s education, cubic functions of average monthly mean,
minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation,
and monthly cloud coverage during each relevant 3-month period.
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Figure A4. Effects of Thermal Inversions on High School Completion by Gender, with
Additional Fixed Effects
Notes: Separate regressions are conducted for men and women. * p< 0.1, ** p< 0.05, *** p< 0.01
are used to denote significant differences across genders. Intervals represent 95% intervals. Controls
include birth month, birth year, municipality of birth, and survey wave by birth year fixed effects,
state-by-quadratic year trends, mother’s education, father’s education, cubic functions of average
monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity, monthly
precipitation, and monthly cloud coverage during each relevant 3-month period.
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Figure A5. Effects of Thermal Inversions on High School Completion by Gender, Across
High and Low Son Preference States
Notes: * p< 0.1, ** p< 0.05, *** p< 0.01 are used to denote significant differences across genders.
Only the second trimester coefficients are reported, though inversions in all other three-month
periods are included. Separate regressions are conducted for men and women. Intervals represent
95% confidence intervals. Controls include: birth month, birth year, municipality of birth, survey
wave by birth year fixed effects, state-specific quadratic year trends, state-specific season dummies,
mother’s education, father’s education, cubic functions of average monthly mean, minimum, and
maximum 2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud
coverage during each relevant 3-month period. States are classified into high (above-median) and
low (below-median) son preference by ranking them according to the following indicators: male-to-
female sex ratio of children under 3, male-to-female sex ratio of children under 5, gender equality
index used in Frias (2008), and the average rank across the previous three indicators.
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Figure A6. State-Level, Gender-Specific White-Collar Shares and Schooling Effects on
Labor Force Participation
Notes: The x-axis represents the coefficient estimate on schooling in a regression of labor force
participation on years of schooling (controlling for age fixed effects). Sample consists of adults aged
25-65 in the 2000 and 2010 Mexican censuses. Blue-collar and white-collar jobs are identified using
the ISCO occupation codes, which are defined as blue-collar or white-collar using the classifications
in Vogl (2014), summarized in Table 1.
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Table A1. Effects of Thermal Inversions on Cognitive and Physical Health

(1) (2) (3) (4)

Average monthly inversions… Raven's test z-score Raven's test z-score Height z-score Height z-score

BEFORE CONCEPTION

19-21 months before birth 0.00453 0.00351 -0.00105 -0.00283

(0.00463) (0.00466) (0.00580) (0.00605)

16-18 months before birth 0.00435 0.00297 -0.00177 -0.00242

(0.00387) (0.00398) (0.00519) (0.00515)

13-15 months before birth 0.00767 0.00556 0.00356 0.00221

(0.00497) (0.00507) (0.00501) (0.00507)

10-12 months before birth 0.00284 0.000185 0.00888* 0.00533

(0.00542) (0.00557) (0.00527) (0.00536)

DURING PREGNANCY

Trimester 1 0.00398 0.00324 0.00519 0.00570

(0.00595) (0.00592) (0.00542) (0.00526)

Trimester 2 -0.0119** -0.0130** 0.00187 0.000907

(0.00561) (0.00581) (0.00550) (0.00557)

Trimester 3 0.00465 0.00350 0.00254 0.00116

(0.00543) (0.00535) (0.00519) (0.00514)

AFTER BIRTH

0-2 months after birth -0.00349 -0.00448 -0.00196 -0.00442

(0.00615) (0.00634) (0.00467) (0.00470)

3-5 months after birth 0.00321 0.00318 0.000718 0.000341

(0.00457) (0.00477) (0.00539) (0.00530)

6-8 months after birth 0.000462 -0.000623 -0.000524 -0.00208

(0.00466) (0.00470) (0.00571) (0.00589)

9-11 months after birth -0.00594 -0.00846 -0.00133 -0.00207

(0.00502) (0.00521) (0.00539) (0.00552)

N 10320 10320 10398 10398

Mean of dependent variable 0.0164 0.0164 -1.008 -1.008

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

* p<0.1  ** p<0.05*** p<0.01

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, ***
p< 0.01. All regressions control for birth month, birth year, municipality of birth, and survey
wave by birth year fixed effects, gender, mother’s education, father’s education, cubic functions
of average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period.
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Table A2. Effects of Thermal Inversions on Cognitive and Physical Health by
Gender

(1) (2) (3) (4)
Average monthly inversions… Raven's test z-score Raven's test z-score Height z-score Height z-score

FEMALE

Trimester 1 0.00464 0.00221 0.00182 0.00603

(0.00774) (0.00790) (0.00810) (0.00818)

Trimester 2 -0.00971 -0.0107 0.00565 0.00453

(0.00832) (0.00850) (0.00729) (0.00756)

Trimester 3 0.00392 0.00257 -0.00178 -0.00153

(0.00770) (0.00784) (0.00668) (0.00668)

N 5455 5455 5506 5506

Dependent variable mean -0.00429 -0.00429 -1.043 -1.043

MALE

Trimester 1 0.00193 0.00155 0.00746 0.00521

(0.00754) (0.00761) (0.00754) (0.00759)

Trimester 2 -0.0139* -0.0127 -0.00539 -0.00830

(0.00814) (0.00883) (0.00805) (0.00825)

Trimester 3 0.00438 0.00294 0.0107 0.00790

(0.00862) (0.00842) (0.00831) (0.00826)

N 4865 4865 4892 4892

Dependent variable mean 0.0397 0.0397 -0.970 -0.970

MALE-FEMALE DIFFERENCE

Trimester 1 -0.00272 -0.000663 0.00564 -0.000822

(0.0101) (0.0109) (0.0111) (0.0115)

Trimester 2 -0.00422 -0.00199 -0.0110 -0.0128

(0.0117) (0.0122) (0.0108) (0.0110)

Trimester 3 0.000465 0.000376 0.0124 0.00943

(0.0120) (0.0120) (0.0105) (0.0106)

N 10320 10320 10398 10398

Additional Fixed Effects None

state-by-season, state-

by-quadratic-year None

state-by-season, state-

by-quadratic-year

Standard errors in parentheses (clustered at municipality level)

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, **
p< 0.05, *** p< 0.01 All regressions control for birth month, birth year, municipality of
birth, and survey wave by birth year fixed effects, mother’s education, father’s education,
cubic functions of average monthly mean, minimum, and maximum 2m temperatures,
monthly relative humidity, monthly precipitation, and monthly cloud coverage during
each relevant 3-month period. Separate regressions are conducted for men and women.
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Table A3. Effects of Thermal Inversions on Schooling by Gender

(1) (2) (3) (4)

Average monthly inversions… Years of Schooling Years of Schooling HS Completion HS Completion
FEMALE

Trimester 1 0.0296 0.0254 0.375 0.363
(0.0217) (0.0213) (0.352) (0.352)

Trimester 2 -0.0165 -0.0232 -0.773** -0.792***
(0.0208) (0.0202) (0.305) (0.298)

Trimester 3 -0.0140 -0.0109 0.0748 0.179
(0.0210) (0.0196) (0.307) (0.311)

N 5634 5634 5634 5634
Dependent variable mean 9.521 9.521 28.79 28.79

MALE
Trimester 1 -0.000200 -0.00251 -0.0848 -0.0607

(0.0194) (0.0192) (0.298) (0.304)

Trimester 2 0.00665 0.00771 -0.0714 -0.0211
(0.0183) (0.0196) (0.261) (0.270)

Trimester 3 -0.00524 -0.00777 0.315 0.291
(0.0178) (0.0174) (0.320) (0.333)

N 5081 5081 5081 5081
Dependent variable mean 9.199 9.199 24.13 24.13

MALE - FEMALE DIFFERENCE
Trimester 1 -0.0298 -0.0279 -0.460 -0.423

(0.0304) (0.0293) (0.476) (0.478)

Trimester 2 0.0231 0.0309 0.702* 0.771*
(0.0281) (0.0295) (0.393) (0.405)

Trimester 3 0.00874 0.00314 0.240 0.112
(0.0256) (0.0243) (0.429) (0.431)

N 10715 10715 10715 10715

Additional Fixed Effects None
state-by-season, state-
by-quadratic-year None

state-by-season, state-
by-quadratic-year

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05,
*** p< 0.01. In high school completion regressions, coefficients are scaled to represent percentage
points. All regressions control for birth month, birth year, municipality of birth, and survey
wave by birth year fixed effects, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period. Separate
regressions are conducted for men and women.
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Table A4. Effects of Thermal Inversions on Income
by Gender

(1) (2)

Average monthly inversions… Annual income Annual income

FEMALE
Trimester 1 -3.039 121.3

(552.6) (755.3)

Trimester 2 -1112.9* -1056.2*
(601.5) (617.4)

Trimester 3 -187.4 -93.30
(746.8) (855.1)

N 954 954
Dependent variable mean 24555.6 24555.6

MALE
Trimester 1 -97.25 -416.4

(333.3) (412.4)

Trimester 2 -251.4 -499.6
(299.5) (335.9)

Trimester 3 36.15 -275.0
(267.8) (292.0)

N 2043 2043
Dependent variable mean 31405.0 31405.0

MALE - FEMALE DIFFERENCE
Trimester 1 -94.21 -537.6

(601.9) (710.1)

Trimester 2 861.5 556.6
(641.3) (671.4)

Trimester 3 223.6 -181.7
(741.4) (827.0)

N 2997 2997

Additional Fixed Effects None
state-by-season, state-
by-quadratic-year

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05,
*** p< 0.01. All regressions control for birth month, birth year, municipality of birth, and
survey wave by birth year fixed effects, mother’s education, father’s education, cubic functions of
average monthly mean, minimum, and maximum 2m temperatures, monthly relative humidity,
monthly precipitation, and monthly cloud coverage during each relevant 3-month period. Separate
regressions are conducted for men and women.
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Table A5. Effects of Thermal Inversions on Early Educational Attainment, by
Gender

(1) (2) (3) (4)

Average monthly inversions…
Elementary School 
Completion

Elementary School 
Completion

Junior High School 
Completion

Junior High School 
Completion

FEMALE
Trimester 1 -0.0130 -0.0326 0.264 0.210

(0.207) (0.203) (0.326) (0.325)

Trimester 2 0.217 0.167 0.0556 -0.0529
(0.179) (0.187) (0.343) (0.342)

Trimester 3 -0.173 -0.129 -0.285 -0.324
(0.180) (0.179) (0.361) (0.344)

N 5634 5634 5634 5634
Dependent variable mean 92.90 92.90 70.94 70.94

MALE
Trimester 1 -0.0277 -0.0402 -0.475 -0.493

(0.187) (0.197) (0.344) (0.351)

Trimester 2 0.185 0.122 0.229 0.188
(0.208) (0.221) (0.364) (0.373)

Trimester 3 -0.252 -0.303 -0.175 -0.162
(0.209) (0.208) (0.283) (0.293)

N 5081 5081 5081 5081
Dependent variable mean 90.85 90.85 66.42 66.42

MALE - FEMALE DIFFERENCE
Trimester 1 -0.0147 -0.00758 -0.739 -0.702

(0.300) (0.307) (0.470) (0.486)

Trimester 2 -0.0324 -0.0447 0.174 0.241
(0.262) (0.283) (0.550) (0.545)

Trimester 3 -0.0790 -0.174 0.111 0.162
(0.256) (0.243) (0.450) (0.441)

N 10715 10715 10715 10715

Additional Fixed Effects None
state-by-season, state-
by-quadratic-year None

state-by-season, state-
by-quadratic-year

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05,
*** p< 0.01. Coefficients scaled to represent percentage points. All regressions control for birth
month, birth year, municipality of birth, and survey wave by birth year fixed effects, mother’s
education, father’s education, cubic functions of average monthly mean, minimum, and maximum
2m temperatures, monthly relative humidity, monthly precipitation, and monthly cloud coverage
during each relevant 3-month period. Separate regressions are conducted for men and women.
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Table A6. Effects of Thermal Inversions on Adjusted
Raven’s Test scores by Gender

(1) (2)

Average monthly inversions…
Adjusted Raven's test z-
score

Adjusted Raven's test z-
score

FEMALE
Trimester 1 0.00772 0.00516

(0.00814) (0.00837)

Trimester 2 -0.0125 -0.0139
(0.00828) (0.00849)

Trimester 3 0.00296 0.00147
(0.00756) (0.00770)

N 5455 5455
Dependent variable mean 0.00291 0.00291

MALE
Trimester 1 0.00143 0.000715

(0.00776) (0.00785)

Trimester 2 -0.0125 -0.0121
(0.00800) (0.00874)

Trimester 3 0.00516 0.00346
(0.00824) (0.00811)

N 4865 4865
Dependent variable mean 0.0354 0.0354

MALE-FEMALE DIFFERENCE
Trimester 1 -0.00628 -0.00444

(0.0107) (0.0114)

Trimester 2 -0.0000322 0.00176
(0.0117) (0.0122)

Trimester 3 0.00220 0.00199
(0.0115) (0.0115)

N 10320 10320

Additional Fixed Effects None
state-by-season, state-
by-quadratic-year

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, ***
p< 0.01. Adjusted Raven’s scores omit two questions of a specific type that has been previously
noted to exhibit gender differences. All regressions control for birth month, birth year, municipality
of birth, and survey wave by birth year fixed effects, mother’s education, father’s education, cubic
functions of average monthly mean, minimum, and maximum 2m temperatures, monthly relative
humidity, monthly precipitation, and monthly cloud coverage during each relevant 3-month period.
Separate regressions are conducted for men and women.
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Table A8. Effects of Thermal Inversions on Cognitive Ability, by
White Collar Shares

(1) (2)

Average monthly inversions…
Raven's test z-
score

Raven's test z-
score

Trimester 1 0.00221 0.00770
(0.00793) (0.0110)

Trimester 2 -0.0107 -0.0134
(0.00853) (0.0107)

Trimester 3 0.00257 0.00932
(0.00786) (0.0134)

Trimester 1 -0.000663 -0.00551
x 1(Male) (0.0109) (0.0127)

Trimester 2 -0.00199 0.000519
x 1(Male) (0.0122) (0.0129)

Trimester 3 0.000376 -0.00531
x 1(Male) (0.0120) (0.0153)

Trimester 1 -0.00555
x 1(Labor market variable in top quartile) (0.00904)

Trimester 2 0.00377
x 1(Labor market variable in top quartile) (0.00795)

Trimester 3 -0.00761
x 1(Labor market variable in top quartile) (0.0111)

N 10320 10281
Dependent variable mean 0.0164 0.0165

Labor market variable None
White-collar 
proportion

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05,
*** p< 0.01. All regressions control for the following variables and their interactions with a male
indicator (as well as the main effect of gender): birth month, birth year, municipality of birth,
and survey wave by birth year fixed effects, state-specific quadratic year trends, state-specific
season dummies, mother’s education, father’s education, cubic functions of average monthly mean,
minimum, and maximum 2m temperatures, monthly relative humidity, monthly precipitation, and
monthly cloud coverage during each relevant 3-month period, as well as inversions in all other
three-month periods. The main effect of the relevant labor market dummy and its interactions
with inversions in all other three-month periods are also included. Individuals are assigned to
labor market variables in their commuting zone of residence at age 12, and linear interpolation is
used to interpolate between census years.
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Table A9. Effects of Thermal Inversions on High School Graduation, by White
Collar Shares and Additional Labor Market Variables

(1) (2) (3)

Average monthly inversions… HS Completion HS Completion HS Completion

Trimester 1 0.244 0.0574 0.207
(0.487) (0.518) (0.488)

Trimester 2 -0.0820 0.0243 0.0191
(0.442) (0.451) (0.442)

Trimester 3 0.0267 -0.0183 -0.0858
(0.499) (0.566) (0.530)

Trimester 1 -0.134 -0.247 -0.439
x 1(Male) (0.627) (0.601) (0.567)

Trimester 2 0.129 0.129 0.127
x 1(Male) (0.520) (0.495) (0.479)

Trimester 3 0.587 0.172 0.163
x 1(Male) (0.645) (0.575) (0.518)

Trimester 1 0.265 0.263 0.185
x 1(White collar variable in top quartile) (0.415) (0.397) (0.395)

Trimester 2 -0.900** -0.939** -0.944**
x 1(White collar variable in top quartile) (0.376) (0.385) (0.398)

Trimester 3 0.351 0.240 0.273
x 1(White collar variable in top quartile) (0.434) (0.423) (0.424)

Trimester 1 -0.327 0.617 0.521
x 1(Other variable in top quartile) (0.387) (0.545) (0.857)

Trimester 2 0.109 -0.166 -0.475
x 1(Other variable in top quartile) (0.431) (0.577) (0.801)

Trimester 3 -0.575 0.00000664 0.950
x 1(Other variable in top quartile) (0.363) (0.646) (1.165)

N 10677 10677 10677
Dependent variable mean 26.47 26.47 26.47

Other Variable Average income
Ever-married shares 
(among ages 18-25)

Agricultural industry 
shares

Notes: Standard errors (clustered at municipality level) in parentheses. * p< 0.1, ** p< 0.05, ***
p< 0.01. Coefficients scaled to represent percentage points. All regressions control for the following
variables and their interactions with a male indicator (as well as the main effect of gender): birth
month, birth year, municipality of birth, and survey wave by birth year fixed effects, state-specific
quadratic year trends, state-specific season dummies, mother’s education, father’s education, cubic
functions of average monthly mean, minimum, and maximum 2m temperatures, monthly relative
humidity, monthly precipitation, and monthly cloud coverage during each relevant 3-month period,
as well as inversions in all other three-month periods. The main effect of both relevant labor market
dummies and their interactions with inversions in all other three-month periods are also included.
Individuals are assigned to labor market variables in their commuting zone of residence at age 12,
and linear interpolation is used to interpolate between census years.
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Appendix B: Background and Data Appendix

B.1. Pollutants

CO is a colorless and odorless gas that binds more readily to hemoglobin than

oxygen and hinders the body’s ability to carry oxygen. CO is produced in

combustion, and its main source (especially in urban areas) is vehicle emissions. In

a pregnant woman, CO can hinder the delivery of oxygen to the fetus, leading to

long-term neurological and skeletal damage (Aubard and Magne, 2000).

Particulate matter refers to a mixture of solid and liquid particles in the

air, which includes fine particles known as PM-2.5 (with diameters less than 2.5

micrometers) and inhalable coarse particles known as PM-10 (with diameters less

than 10 but greater than 2.5 micrometers). These particles can be emitted directly

from a source, like fires or construction sites. They can also form as a result

of chemical reactions in the atmosphere. When inhaled by a pregnant woman,

particulate matter can cause inflammation or infection. This can thicken blood and

plasma, hindering blood flow and glucose transport to the placenta (Lacasaña et al.,

2005). The effects of one particular component of particulate matter, polycyclic

aromatic hydrocarbons (PAHs), can be especially dangerous. PAHs are thought

to increase the prevalence of DNA adducts, which are associated with negative

birth outcomes like low birth weight and decreased head circumference (Perera

et al., 1998; Le et al., 2012; Lacasaña et al., 2005). Moreover, PAHs can cross the

placental barrier and damage the fetal brain by causing inflammation, oxidative

stress, or damaging blood vessels. Recent evidence has shown this can result in

lower cognition later in childhood (Peterson et al., 2015).
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B.2. Thermal Inversions

There are three common types of inversions that are associated with worsened

air quality; they form in slightly different circumstances but all result in a warm

layer of air above a cooler layer. Radiation inversions take place at night, as the

surface cools by emitting thermal infrared radiation. Unlike during the day, when

radiation from the sun tends to have a stronger opposing effect, this results in

cooler air near the surface than further above ground. Radiation inversions are

more common during long, calm, and dry nights, when there is more time for the

cooling to take place, less mixing in the air, and little water vapor to absorb the

thermal infrared energy. Subsidence inversions take place when air descends and

warms as it compresses, creating a warm layer above cooler air. This can happen

in mountainous regions, when air flows down the side of a slope, or in high pressure

systems,37 which are characterized by this descending movement and compression

of air. Over coastal areas, marine inversions take place when air above the sea,

which is cooler than the air above land, flows inland and pushes the warm inland

air upward.

B.2.1. NARR Validation Checks. I use the NARR data to identify inversions.

Detailed validation exercises have concluded that the NARR data closely matches

observational data and offers a considerable improvement over prior global

reanalysis data sets (Mesinger et al., 2006). Because all of these checks have

included the United States and Canada, which may dominate the validation

exercises due to their size, I verify that these conclusions are still valid when I

37. High pressure systems are associated with high temperatures, clear skies, and light winds

at the surface
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restrict to only Mexico. First, using temperature data that is available on the same

INECC pollution database described above, I find a very high correlation (0.87)

between the NARR 2-meter temperature and these ground-level measurements.

Secondly, I compare my measure of inversions to a measure calculated using

temperature readings from satellite data: NASA’s Atmospheric Infrared Sounder

(AIRS), used by Jans et al. (2018) to identify thermal inversions in Sweden. Because

the AIRS was launched in 2002, the data is too recent to use as my measure

of inversions or to instrument for my current measure of inversions, but for two

overlapping years (2002 and 2003), I find correlations between the NARR and AIRS

inversions measures of around 0.7.38

B.2.2. Construction of Thermal Inversion Variables. As described in the

main body of the paper, the NARR dataset provides temperature values on a 0.3

by 0.3 degree grid for 29 pressure levels (extending vertically into the atmosphere),

every three hours. For each latitude-longitude grid point and for each recorded

hour, I create an indicator equal to 1 if the 2-meter temperature (equivalent to

what is usually reported in weather reports) is higher than the temperature at

the first pressure level above the surface, which lies roughly 300 meters above the

surface. Because surface pressure varies across space, I use the temperatures from

38. It should be noted that there are several factors that complicate the comparison between

the NARR and AIRS data. First of all, the times at which the AIRS and NARR data recorded

temperatures do not match up exactly. Secondly, the AIRS data has a 1 by 1 degree resolution,

substantially larger than the NARR’s 0.3 by 0.3 degree resolution. Finally, the AIRS data

records temperatures at fewer pressure levels than the NARR. If anything, these factors are

likely to weaken the correlation between the two measures, suggesting that a correlation of 0.7

may be an underestimate.
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different pressure levels depending on the altitude at a particular grid point. For

a municipality at sea level (1000 hPa), I use the temperature at 975 hPa, but

for a higher altitude location in Mexico City, for example, I use the temperature

at 700 hPa (if surface pressure is 725 hPa). After creating inversion indicators

for every recorded hour, I then collapse to two indicators per day – one for any

daytime inversion and one for any nighttime inversion. I then match each Mexican

municipality to its four closest grid points and assign each municipality with the

inverse-distance weighted average of the nighttime inversion indicator for each day.

I sum this indicator over the month and then average over three-month periods.

I assign inversions to individuals based on municipality of birth, a restricted use

variable obtained from the migration module of the MxFLS, which is directed to

individuals aged 15 and older. For the individuals who are missing this variable,39

I assign them the inversions in their municipality of residence. I do this instead of

dropping these individuals because over 80% of individuals who move municipalities

between birth and the survey date report that they are currently living in their

state of birth and about 70% report living in their municipality of birth. Therefore,

for over half of the individuals with missing birth municipalities, using municipality

of residence is the correct imputation, while a majority of the remainder only moved

short distances (i.e. within state).

39. Less than 5% of individuals in each wave of the migration module listed either no

municipality at all or a municipality name that could not be mapped to a unique municipality

code. A slightly larger percentage of individuals in my final sample were missing this variable

simply because they had not completed a migration module in any wave, despite being older

than 15 by the most recent wave.
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To create trimester-specific inversion variables for each individual, because I do

not have the actual date of conception or date of birth, I simply count backwards,

in three month increments, from an individual’s month of birth and average over

each three month period.

B.3. Construction of Individual-Level Variables

I merge all waves of data for each individual and extract the relevant information

from the relevant waves. For variables that should be consistent across waves

(gender, birth year), I use data from all available waves and resolve inconsistencies

by prioritizing values that are consistent across at least two waves. For other

variables, I pick one wave for each individual. In particular, I use the Raven’s

test score from the first wave the individual took the test (to avoid capturing

any learning effects). For all other reduced-form outcome variables (schooling and

income), I use the variable from the most recent survey wave available, with one

important exception.

In 2009, the share of individuals in the MxFLS who report being a technician in

their main job rises by 11 percentage points, from 1% in 2005 and 2% in 2002. This

dramatic increase does not show up when comparing the share of technicians in the

2000 and 2010 censuses and therefore seems to be driven by a change in coding,

rather than an actual increase in the share of individuals in this occupation. In

order to avoid using variables that are coded differently across survey waves, I

ignore all work-related variables for individuals who report working as a technician

in 2009. This does not mean that I drop these individuals from the sample – this

simply means that their work-related variables (income and occupation category,

which are used to create Figure 6) are taken from the most recent available wave

prior to 2009.
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To represent occupation types, the MxFLS uses a different categorization

system from the ISCO codes that are used in the census (summarized in Appendix

Table 1). Appendix Table B1 lists how I map these Mexican Classification of

Occupations (CMO) codes to the white-collar and blue-collar categories. This

mapping was fairly straightforward, based simply on comparing CMO descriptions

to ISCO descriptions (and then using the Vogl (2014) classification to categorize

into white-collar and blue-collar).

B.4. Predicting White Collar Proportions

The results in column 2 of Table A7 combine census data with national-level growth

rates from Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH) to

predict intercensal years. ENIGH is a nationally representative household survey

that was first conducted by Mexico’s National Institute of Statistics and Geography

(INEGI) in 1982, and every two years since 1992. For each year y (measured relative

to the most recent census), I calculate national-level growth rates of six major

industries40 (subscripted by j). I denote these growth rates gjy. From the census,

in addition to the gender-specific proportions of white collar jobs in each decade

in each zone z (pgz0), I also calculate the zone-specific and gender-specific share

of brain-intensive jobs in each industry: sjgz0. The predicted proportion, p̂gzy, is

simply:

40. The six broad industry categories I use are: (1) agriculture, (2) oil, natural gas, and

construction, (3) education, health, and government, (4) manufacturing, (5) service and

hospitality, and (6) trade.
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Table B1. Mexican Classification of Occupation (CMO) Codes

CMO Code and Description

White-Collar ("Brains") 
11 Professionals

12 Technicians

13 Education Workers

14 Arts, sports, performance, and sports workers

21 Employees and directors of the public, private, and social sectors

61 Department chiefs, coordinators and supervisors of the administrative 

activities and services

62 Workers in the support of the administrative activities

Blue-Collar ("Brawn") 
41 Agricultural, cattle activities, foresting, hunting, and fishing workers

51 Chiefs, supervisors, and other control workers in craft and industrial 

manufacture and in maintenance and repairing activities

52 Craftsmen and manufacturers in the transformation industry and workers 

of maintenance and repairing activities

53 Operators of fixed machinery of continuous movement and equipment in 

the process of industrial production

54 Assistants, laborers, and similar in the process of artisan and industrial 

manufacture and in repairing and maintenance activities

55 Conductors and assistants of conductors of movable machinery and 

means of transport

71 Retailers, employees in commerce, and sales agents 
72 Street sales and services workers

81 Workers in personal establishments

82 Workers in domestic services

Notes: CMO codes are first matched to ISCO codes. Brain and brawn categorizations from Vogl
(2014).

p̂gzy = pgz0 +
6∑

j=1

sjgz0gjy. (B.1)
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